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Abstract: Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human 
pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological 
field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with 
the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R 
system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential 
and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. 
Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid 
dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant 
was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists 
with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and 
improving patients’ quality of life in several diseases and cancers.
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1 Introduction 

Thus far, numerous human tumors have been ob‐
served to exhibit an overexpression of peptide hormones 
and neuropeptides, such as growth inhibitors, bombe‐
sin, bradykinin, and tachykinins (for instance, sub‐
stance P (SP), neuropeptide Y (NPY), and hemokinin-
1 (HK-1)), along with their corresponding receptors 
(Mohammadi et al., 2020). Moreover, these peptides 
were reported to play a role in regulating various on‐
cogenic activities including cell proliferation, metasta‐
sis, and angiogenesis (Ghasemi et al., 2018, 2019; 
Ebrahimi et al., 2020; Lorestani et al., 2020). Unsur‐
prisingly, their cognate receptors have been recognized 
as prospective targets for the development of drugs and 
tumor diagnostic markers (Morgat et al., 2014).

Mammalian tachykinins, such as neurokinin, are 
a class of bioactive peptides that are not only distributed 
in the nervous and immune systems or the cardiovascu‐
lar system (Dehlin and Levick, 2014; Mistrova et al., 
2016), but also present in muscle tissue (Gordon et al., 
1993), connective tissue, and body fluids (Muñoz and 
Coveñas, 2020a). Previous studies have shown that 
SP belongs to a family of tachykinins that exerts its 
physiological effects by neurokinin-1 receptor (NK-1R) 
(Liu and Burcher, 2005; Steinhoff et al., 2014). 
Among the tachykinins, SP was the first one to be dis‐
covered, which has since been found to have the high‐
est level of selectivity and affinity for NK-1R (Liu 
and Burcher, 2005). The binding of SP to NK-1R 
regulates multiple physiological functions and triggers 
various physiological and pathological responses, such 
as pain transmission (de Felipe et al., 1998), nausea 
and vomiting (Tattersall et al., 1996), pruritus (Agelo‐
poulos et al., 2019), vasodilatation (Yamamoto, 1993), 
depression, anxiety (Ratti et al., 2013), wound healing 
(Mohammadi et al., 2020), corneal epithelial wound 
healing (Yanai et al., 2020), inflammation (Khorasani 
et al., 2020), abortion (Alwazzan et al., 2020), alcohol 
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addiction (Khom et al., 2020), hematopoiesis (Muñoz 
and Coveñas, 2020a), viral infection (Bubak et al., 
2018), tendon skin fibrosis (Barbe et al., 2020), dry 
eye (Taketani et al., 2019), pulmonary fibrosis (Mo‐
hamed et al., 2022), and neurodegenerative diseases 
(Martinez and Philipp, 2016).

In addition, the overexpression of NK-1R may 
be closely associated with the progression of a wide 
range of cancers, such as melanoma, glioma, ovarian 
cancer, pancreatic cancer (Mohammadi et al., 2020), 
esophageal cancer (Dong et al., 2015), breast cancer 
(Muñoz et al., 2020), head and neck tumor (Singh 
et al., 2021), gallbladder cancer (Deng et al., 2019), 
thyroid cancer (Isorna et al., 2020), hepatoblastoma 
(Muñoz et al., 2019b), glioblastoma (Afshari et al., 
2021), leukemia (Ge et al., 2019), and colorectal cancer 
(Shi et al., 2021). Meanwhile, the expression of NK-
1R is not essential for the viability of normal cells 
(Muñoz et al., 2022).

The above findings imply that NK-1R is a critic‑
al target in cancer treatment, and NK-1R antagonists 
have the potential to be effective against a wide range 
of tumors. Thus far, this prospect has triggered exten‐
sive academic and industrial interest in similar com‐
pounds and their expanded applications (Schöppe et al., 
2019). Recently, scientists have developed novel NK-
1R antagonists, such as aprepitant, netupitant, fosapre‐
pitant, and SR140333. Currently, there are two non-
peptide NK-1R antagonists approved in China for the 
treatment of chemotherapy-induced nausea and vomit‐
ing: aprepitant and fosaprepitant, an oral capsule and 
a powder for injection, respectively. Aprepitant was 
the first NK-1R antagonist approved by the US Food 
and Drug Administration (FDA) for the clinical treatment 
of nausea and vomiting after chemotherapy (Schöppe 
et al., 2019).

With the deepening of research on the mech‐
anism of the SP/NK-1R system, the application of NK-
1R antagonists is also constantly expanding. In the 
field of cancer treatment, aprepitant has been nano-
formulated to improve drug efficacy (Ramírez-García 
et al., 2019). In addition, it has been used to create 
conjugates carrying radioactive isotopes, providing 
potential therapeutic diagnostic radiopharmaceuticals 
for the imaging and treatment of NK-1R-positive tu‐
mors (Halik et al., 2020). Furthermore, aprepitant was 
shown to have strong synergistic effects when used 
in combination with other drugs, overcoming tumor 

resistance (García-Aranda et al., 2022). Additionally, 
it can act as an anti-inflammatory drug, blocking the 
NK-1R pathway in macrophages with the potential to 
inhibit inflammation (Zhao et al., 2020). Recently, 
aprepitant has also been found to have potential thera‐
peutic value in the treatment of severe respiratory dis‐
eases caused by coronavirus disease 2019 (COVID-
19) (García-Aranda et al., 2022). This paper provides 
an updated overview of the current therapeutic poten‐
tial, mechanism, and expanded applications of NK-
1R antagonists, including aprepitant.

2 Potential of SP/NK-1R antagonists in the 
treatment of pathophysiological disorders 

2.1 Inhibition of inflammatory response

The SP/NK-1R system mediates a wide range of 
physiopathological responses. In the development of 
rheumatoid arthritis, NK-1R is overexpressed in rheu‐
matoid arthritis fibroblast-like synoviocytes (RA-
FLSs) compared to normal FLSs. The treatment of 
RA-FLSs with aprepitant can specifically block NK-
1R, reducing the secretion of tumor necrosis factor-α 
(TNF-α)-induced pro-inflammatory cytokines as well 
as the production of reactive oxygen species (ROS), 
thus inhibiting inflammatory responses. At the same 
time, aprepitant can prevent the expression of matrix 
metalloproteinases (MMPs) induced by TNF-α (Liu 
et al., 2019), i.e., proteases that can degrade extracel‐
lular matrix and many non-matrix proteins, playing a 
key role in disease progression (Craig et al., 2015). 
These findings indicate that targeting NK-1R with 
specific antagonists such as aprepitant may provide a 
new treatment strategy for RA (Liu et al., 2019).

Furthermore, the SP/NK-1R system modulates 
the secretion of human colonic epithelial cell exo‐
somes and thereby suppresses inflammatory responses. 
MicroRNA-21 (miR-21) is a kind of microRNA that 
has been proved to promote the proliferation of colonic 
epithelial cells. After stimulation by SP, miR-21 is se‐
lectively sorted into exosomes, thus stimulating the 
growth of colonic epithelial cells. Then, the extracel‐
lular vesicles produced by SP-stimulated colon epithe‐
lial cells may amplify the inflammatory response of 
SP/NK-1R in colon tissue-related cells by transferring 
the vesicle cargo to adjacent cells not originally targeted 
by SP (Bakirtzi et al., 2019). Targeting the SP/NK-1R 
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signaling system with NK-1R antagonists can inhibit 
or reduce the production of extracellular vesicles in‐
duced by SP stimulation in colon epithelial cells, pro‐
viding new treatment strategies for colon tissue-related 
inflammatory reactions. Besides, increasingly more 
robust researches have reported that miR-21 is associ‐
ated with the occurrence and proliferation of age-related 
diseases (Olivieri et al., 2021), kidney injury and dis‐
ease (Mahtal et al., 2022), liver disease (Wang et al., 
2021), pressure overload (Ramanujam et al., 2021), 
retinal ischemia/reperfusion injury (Wan et al., 2020), 
osteoporosis (Lee et al., 2021), and chronic obstruc‐
tive pulmonary disease (Kim et al., 2021). Considering 
the relationship between the SP/NK-1R system and 
miR-21 demonstrated above, antagonists of NK-1R may 
have the potential to alleviate these disorders and others.

Moreover, aprepitant has recently been shown to 
reduce inflammation and inhibit inflammatory pain 
by inhibiting c-Jun N-terminal kinase (JNK) and p38/
mitogen-activated protein kinase (MAPK) (Yang et al., 
2021). Therefore, using NK-1R antagonists can pro‐
vide new therapeutic strategies for SP/NK-1R disease 
(Fig. 1).

2.2 Alleviation of cardiac diastolic dysfunction

Cardiac fibrosis is the underlying cause of car‐
diac diastolic dysfunction, which leads to heart failure. 
In hypertensive mouse hearts, NK-1R regulates the 
maturation of cardiomyocytes and promotes the secre‐
tion of hypertrophic factors in vitro, thereby mediat‐
ing cardiac fibrosis. The use of NK-1R antagonist 

L732138 can halt this process and regulate the level 
of myofibroblasts in vivo (Widiapradja et al., 2019), 
thus reducing cardiac diastolic dysfunction.

2.3 Alleviation of dry eye symptoms

Dry eye disease (DED) is a highly prevalent, 
multifactorial chronic disease of the ocular surface 
characterized by persistent irritation or burning symp‐
toms. Failure to provide treatment can result in 
inflammation-induced damage to both the cornea and 
conjunctiva (Definition and Classification Subcom‐
mittee, 2007; Rouen and White, 2018), severely af‐
fecting the life quality of patients. Multiple studies 
(Chen et al., 2014; Foulsham et al., 2017) have illus‐
trated that inflammation in DED is primarily mediated 
by an unrestricted effector T helper cell 17 (Th17) 
response caused by the dysfunction of immunosup‐
pressive regulatory T cells (Tregs). Normally, Tregs have 
the ability to suppress the response of pathogenic 
helper T cells, which in turn respond to dry stimuli in 
the regulatory environment. However, a significant 
increase in the level of SP promotes dysregulation of 
Treg function in the DED, while blocking the SP/
NK-1R pathway with NK-1R antagonists can effec‐
tively restore Treg function and alleviate dry eye symp‐
toms (Taketani et al., 2019).

2.4 Remission of neurological damage from brain 
hemorrhage in mice

Intracerebral hemorrhage (ICH) is a severe sub‐
type of stroke, and recent research has found that 

Fig. 1  Overview of substance P (SP)/neurokinin-1 receptor (NK-1R) antagonists in the treatment of pathophysiological 
disorders.
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aprepitant can alleviate neurological deficits in mice 
after ICH by inhibiting the NK-1R/protein kinase C δ 
(PKCδ) signaling pathway and reducing neuronal death 
(Jin et al., 2022). Therefore, antagonizing NK-1R may 
have the potential in the treatment of ICH.

3 Therapeutic value of NK-1R antagonist 
aprepitant in the treatment of severe respiratory 
diseases caused by COVID-19 

During the COVID-19 pandemic period, a large 
body of evidence was gathered to prove that the sever‐
ity and mortality rates in elderly people are higher 
than those in infants and children (The Novel Corona‐
virus Pneumonia Emergency Response Epidemiology 
Team, 2020). Recently, an epidemiological study in 
China indicated that children’s clinical symptoms 
(acute respiratory disease) are milder than those of 
adult patients among infected individuals (Dong et al., 
2020). One possible reason is that COVID-19 causes 
the excessive production of immune cells and cyto‐
kines in adults (Biadsee et al., 2020), while children 
typically generate minimal amounts of inflammatory 
mediators. Therefore, they can be spared from the im‐
pact of “cytokine storms,” a cascading process of an 
overreactive immune system response to infection, 
which is one of the reasons for uncontrollable inflam‐
matory reactions in adults (Tang et al., 2020).

In the respiratory system, SP is one of most preva‐
lent neuropeptides. It is predominantly situated in the 
bronchopulmonary fibers and plays a critical role in 
protecting the lungs from various harmful stimuli, such 
as viral infections or toxic irritants. However, the ex‐
cessive release of SP from the respiratory epithelium 
can lead to acute respiratory distress syndrome, a severe 
respiratory illness characterized by respiratory failure 
and pulmonary inflammation (Bai et al., 1995; Chu 
et al., 2000). Notably, the symptoms caused by SP im‐
balance are similar to those of COVID-19 infection, 
such as influenza, fever, headache, sore throat, fatigue, 
and loss of olfactory and gustatory senses. Patients 
with COVID-19 infection can exhibit cardiac system 
dysfunction or heart failure in severe cases, while 
these symptoms are avoidable in SP-deficient mice 
(Meléndez et al., 2011). The increase in SP can acti‐
vate the pain response to viral infection through 
the NK-1R, triggering acute immune responses that 

lead to cytokine storms or organ failure in severe 
cases.

In the past two decades, various neurokinin re‐
ceptor antagonists have been developed to specifically 
block the binding of SP to its receptors. To date, apre‐
pitant has been the only drug approved for clinical 
application (Quartara and Altamura, 2006). Con‐
sidering the acute immune and inflammatory re‐
sponses mediated by the elevation of the SP/NK-1R 
complex, researchers have turned to aprepitant as an 
anti-inflammatory drug with specific antiviral effects. 
As recently reported, aprepitant can be applied in clin‐
ical treatment to avoid fatal consequences, particularly 
in adult COVID-19 infections (Reinoso-Arija et al., 
2021). However, further research is needed to support 
the accuracy and effectiveness of this therapeutic in‐
tervention (Mehboob and Lavezzi, 2021).

4 Potential of targeted blockade of NK-1R to 
treat multiple malignancies overexpressing 
SP and NK-1R 

4.1 Involvement of NK-1R signaling pathway in 
cancer

NK-1R is a G-protein-coupled receptor. Upon 
activation by agonists, it undergoes a conformational 
change, adopting an active-state conformation. This 
conformational transition facilitates the replacement of 
guanosine diphosphate (GDP) bound to the G protein 
α subunit with guanosine triphosphate (GTP) (Thom 
et al., 2021). As a result of NK-1R-mediated G-protein 
activation, the Ras homolog gene family (Rho)–
Rho-associated protein kinase (ROCK) signaling path‐
way (Muñoz and Coveñas, 2020a) and phospholipase 
C (PLC) enzymes are activated, releasing two sec‐
ond messengers, inositol triphosphate (IP3) and diac‐
ylglycerol (DAG), followed by Ca2+ release from the 
endoplasmic reticulum to the cytoplasm and the acti‐
vation of several different proliferative, invasion, and 
migration-related signaling pathways (Douglas and 
Leeman, 2011; Dong et al., 2015), all of which can be 
deregulated in cancer cells, especially by those pre‐
senting NK-1R overexpression. Besides, NK-1R an‐
tagonists counteract the Warburg effect (Muñoz et al., 
2015) (Fig. 2). Thus, blocking NK-1R using antagonists 
can be a promising strategy for tumor treatment.
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4.2 Preclinical research

Many studies have indicated the altered expres‐
sion of SP/NK-1R complex in cancer, as tumor cells 
overexpressing SP and NK-1R promote tumor growth 
and angiogenesis. Therefore, NK-1R is a promising 
target in the treatment of cancer, and NK-1R antag‐
onists have a potential to become broad-spectrum anti‐
tumor drugs (Muñoz and Rosso, 2010; Muñoz et al., 
2015, 2019b; Ge et al., 2019; Shi et al., 2021). In add‑
ition, the upregulation of NK-1R in cancer cells can 
serve as a potential tumor biomarker, aiding in rapid 
diagnosis. Thus far, diverse preclinical studies have 
provided evidence for the prospective utility of NK-
1R antagonists as therapeutic agents against a wide 
spectrum of human malignancies (Table 1).

4.3 Clinical studies

Aprepitant, as an NK-1R antagonist, has already 
been subject to clinical trials. Reports have indicated 
that the effects of aprepitant lead to cumulative 
therapeutic outcomes (Muñoz and Coveñas, 2020a). 
Aprepitant, administered at standard clinical dosages 
(125 mg on the first day, followed by 80 mg on the 
second and third days), is commonly employed for 
managing chemotherapy-induced nausea and vomit‐
ing. Notably, aprepitant at similar dosages has exhibit‐
ed efficacy in alleviating refractory pruritus in cutane‐
ous T-cell lymphoma patients unresponsive to conven‐
tional antipruritic treatments (Maroñas-Jiménez et al., 
2018). Aprepitant has been proven to suppress cough 
in lung cancer patients with comparable dosages in 

Fig. 2  Mechanism of mediating anticancer activity through targeting neurokinin-1 receptor (NK-1R). The stimulation of 
NK-1R results in cell proliferation, antiapoptotic effect, and cell migration. The pathways indicated are involved in these 
mechanisms. NK-1R antagonists impede these pathways and inhibit both tumor cell proliferation and migration, as well 
as exert an apoptotic effect in cancer cells. SP: substance P; PLC: phospholipase C; IP3: inositol triphosphate; DAG: 
diacylglycerol; Rho: Ras homolog gene family; ROCK: Rho-associated protein kinase; PKB/Akt: protein kinase B; 
PKC: protein kinase C; T-K: tyrosine-kinase; MAPK: mitogen-activated protein kinase; ERK: extracellular signal-
regulated kinase; VEGF: vascular endothelial growth factor; pMLC: myosin regulatory light chain phosphorylation; 
MMP: matrix metalloproteinase; NF-κB: nuclear factor-κB; AP-1: activator protein-1.
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Table 1  Relevant results of neurokinin-1 receptor (NK-1R) antagonists in preclinical research

Acute myeloid 
leukemia 
(AML)

Breast cancer

Colon cancer

Cervical cancer

Esophageal cancer

Gallbladder cancer

Glioma

Head and neck 
cancer (HNC)

Hepatoblastoma 
(HB)

The expression of NK-1R is significantly elevated in patients with AML and a group of human leukemia 
cell lines. Blocking NK-1R can induce cell apoptosis both in vitro and in vivo by producing excessive 
mitochondrial reactive oxygen species (mtROS). In addition to its anti-cancer activity, blocking NK-1R 
has an analgesic effect on bone pain induced by leukemia by reducing inflammation and triggering cell 
apoptosis (Ge et al., 2019).

AML cells display an elevated expression of the truncated NK-1R isoform in contrast to healthy lymphocytes. 
While substance P (SP) stimulates proliferation in AML cells, aprepitant demonstrates a concentration-
dependent inhibition of AML cell proliferation, with only minor growth suppression observed in 
lymphocytes. Notably, a higher dose of aprepitant also enhances the survival of AML-treated mice (Molinos-
Quintana et al., 2019).

The overexpression of NK-1R in triple-negative breast cancer (TNBC) promotes cell proliferation and 
migration. In this case, aprepitant can exert an anti-tumor effect by inducing cell apoptosis via blocking 
SP/NK-1R signaling (Muñoz et al., 2020).

The breast cancer cell lines BT-474, MCF-7, MDA-MB-468, and MT-3 exhibit an increased level of 
NK-1R, which plays a role in cell viability. SP promotes cell growth, but when treated with aprepitant, it 
hampers SP-triggered cell proliferation and leads to cell death through apoptosis mediated by NK-1R 
(Muñoz et al., 2014).

Metastatic breast cells exhibit higher expression levels of NK-1R compared to non-metastatic cells. In 
particular, NK-1R is significantly overexpressed in metastatic breast cells compared to their non-metastatic 
counterparts. The treatment with a 30 μmol/L dose of the NK-1R antagonist aprepitant promotes protein 
kinase B (Akt) phosphorylation, which selectively impedes cell proliferation and triggers cell death. 
However, this effect is not observed in non-metastatic 67NR cells (Nizam and Erin, 2018).

Aprepitant exerts apoptotic effects on SW480 colon cancer cells, triggering programmed cell death. It 
concurrently attenuates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade. Additionally, the 
administration of aprepitant inhibits the nuclear factor-κB (NF-κB) signaling pathway, including the 
expression of genes that promote antiapoptotic activity. Notably, this treatment does not substantially affect 
the expression of p53 or its downstream proapoptotic target genes (Ghahremanloo et al., 2021).

In HeLa cells, SP modulates the expression of cell cycle regulators as well as genes associated with apoptosis, 
such as B-cell lymphoma-2 (BCL-2) and BCL-2-associated X protein (BAX). Additionally, SP enhances 
the migratory and proliferative capabilities of these cells, particularly due to the predominant expression 
of the truncated NK-1R isoform. However, the administration of the NK-1R antagonist aprepitant 
counteracts these effects in a dose- and time-dependent manner (Mozafari et al., 2022).

The invasion and metastasis of esophageal cancer cells are induced by SP elevation. Furthermore, aprepitant 
can be used to block the SP-mediated metastasis and angiogenesis of esophageal cancer cells (Mohammadi 
et al., 2020).

After binding with endogenous agonist SP, NK-1R can induce the proliferation, migration, dissemination, 
and invasion of gallbladder cancer cells by regulating the Akt/NF-κB pathway, while antagonizing NK-
1R can reverse this effect (Deng et al., 2019).

Aprepitant treatment exhibits a concentration-dependent reduction in the viability of U87 glioblastoma cell 
lines. Furthermore, aprepitant effectively inhibits the oxidative effects induced by SP by suppressing the 
production of reactive oxygen species (ROS). Aprepitant treatment enhances the enzymatic activity of 
catalase and superoxide dismutase (SOD), suggesting its potential role in mitigating oxidative stress in 
U87 glioblastoma cells (Korfi et al., 2021).

SP has been found to induce a multitude of inflammatory pathways in HNC cells, including the secretion 
of chemokines, cytokines, and inflammatory markers. These events provoke an inflammatory tumor 
microenvironment, which subsequently promotes tumor proliferation and migration. SP also enhances the 
activation of various epithelial-mesenchymal transition (EMT) genes and the translation of matrix 
metalloproteinases (MMPs), which are critical for cancer invasion and metastasis (Singh et al., 2021).

The overexpression of SP and truncated NK-1R can stimulate the growth of HB cells. Non-peptide NK-1R 
antagonists can inhibit HB cell proliferation by inducing HB cell apoptosis in a concentration-dependent 
manner. Treating HB with NK-1R antagonists can not only reduce tumor volume but also decease 
angiogenesis activity (Muñoz et al., 2019b).

Cancer type Relevant results

To be continued
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randomized trials (Noronha et al., 2020; Smith et al., 
2021). Moreover, a clinical trial demonstrated that 
aprepitant at 300 mg/d for 45 d elicits similar antide‐
pressant effects as paroxetine, while displaying side ef‐
fects similar to a placebo (Kramer et al., 1998). Fur‐
thermore, a combination therapy involving the com‐
passionate use of aprepitant (1140 mg/d for 45 d) 
plus palliative radiotherapy led to the disappearance 
of an 8 cm×7 cm lung cancer tumor mass with no se‐
vere side effects (Muñoz et al., 2019a). These clinical 
investigations offer promising prospects for the repur‐
posing of aprepitant in cancer therapy.

5 Strategies to improve the bioavailability of 
NK-1R antagonist aprepitant 

Aprepitant is a compound with high lipophilicity 
(Olver et al., 2007) and low water solubility. Its oral 
bioavailability is determined by dissolution and re‐
lease processes, which is usually the rate-limiting step 
for intestinal absorption (Sugano and Terada, 2015). 
Therefore, the demand to improve the dissolution and 
solubility rate of aprepitant facilitates the develop‐
ment of efficient formulations (Zhang et al., 2018). 
Thus far, several strategies have been developed to 

improve the solubility, dissolution rate, stability, and 
utilization of this drug, such as micronization of ac‐
tive pharmaceutical ingredients, solvation, saliniza‐
tion, nanoencapsulation (Muñoz and Coveñas, 2020b), 
cyclodextrin solubilization, solid dispersion systems 
(Liu et al., 2015), and the use of co-solvents (Roos 
et al., 2017). Improving the efficacy of aprepitant, re‐
ducing its side effects, and achieving its high efficacy 
at low doses are of great practical clinical significance.

5.1 Phosphatidylcholine-based solid dispersion 
system

In order to improve the bioavailability of apre‐
pitant, a research team led by Jaehwi LEE prepared a 
solid dispersion system based on phosphatidylcholine. 
They used inorganic mesoporous materials to adsorb 
the phospholipid-based dispersion system, giving it 
solid-state properties and improving its powder prop‐
erties. Solid dispersion systems comprise a simple and 
effective method for increasing the water solubility and 
dissolution rate of poorly water-soluble drugs (Ridhur‐
kar et al., 2013; Liu et al., 2015, 2022b). In such sys‐
tems, hydrophobic and insoluble drug molecules are 
dispersed in a hydrophilic polymer matrix that changes 
the crystalline state of the drug into an amorphous state, 
effectively increasing its solubility and dissolution 

Human pancreatic 
ductal 
adenocarcinoma
 (PDAC)

Lung cancer

Melanoma

Prostate cancer

The inhibition of NK-1R by aprepitant achieves a significant reduction in cell growth in cancer stem 
cells (CSCs), PDAC cells, and pancreatic stellate cells (PSCs) in a dose-dependent manner. Notably, 
aggressive cancer cell types and specific cell subgroups expressing higher levels of the truncated 
tachykinin receptor 1 (TACR1) isoform exhibit heightened sensitivity to NK-1R inhibition. Therefore, the 
analysis of splice variants holds great promise for potential applications in the stratification of PDAC 
patients, enabling the identification of candidates who could benefit from NK-1R-targeted therapies 
(Beirith et al., 2021).

NK1-R exhibits increased expression in human lung cancer samples, which correlates with advanced 
clinical stages and negative prognosis. The activation of NK-1R stimulates cell proliferation, colony 
formation, EMT, migration, and expression of MMP2/14. Conversely, blocking NK-1R with aprepitant 
enhances the sensitivity of cancer cells to gefitinib/osimertinib, inhibits cell proliferation and migration, 
and slows down tumor growth in nude mice (Zhang et al., 2022).

Both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells exhibit elevated NK-1R 
expression, pivotal for cell viability. SP prompts the proliferation of cancer cells, while aprepitant inhibits 
their growth concentration-dependently via NK-1R, inducing apoptosis (Muñoz et al., 2012).

NK-1R is upregulated in both human melanoma samples and melanoma cell lines such as MEL HO, COLO 
858, and COLO 679, contributing to tumor cell viability. After treatment with aprepitant, cell proliferation 
is suppressed in a concentration-dependent manner through apoptosis (Muñoz et al., 2010).

The truncated isoform of NK-1R is expressed in prostate cancer cells. The presence of SP modulates the 
expression of cell cycle-related proteins (c-Myc, cyclin D1, cyclin B1, and p21) and apoptosis-related 
genes (BCL-2 and BAX), thereby promoting both proliferative and migrative phenotypes in vitro. 
Furthermore, SP stimulation facilitates tumor growth in vivo. The administration of aprepitant significantly 
reverses these effects, leading to enhanced survival time (Ebrahimi et al., 2022).

Table 1 (continued)

Cancer type Relevant results
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rate (Kumar and Gupta, 2013; Sosnik and Seremeta, 
2015).

Phosphatidylcholine is a common biological mol‐
ecule widely used in pharmaceutical dispersion systems. 
When used alone, phosphatidylcholine dispersions have 
a certain degree of “stickiness,” which may exert a nega‐
tive impact on the flowability and stability of formula‐
tions. However, using a formulation containing the ad‐
sorbent Neusilin® and the disintegrant croscarmellose 
sodium (CCS) can effectively improve the physical 
properties of phosphatidylcholine dispersions, enhanc‐
ing their flowability and stability. In addition, the solu‐
bility of aprepitant in phosphatidylcholine-based solid 
dispersions is significantly higher than that of pure 
aprepitant, indicating that phosphatidylcholine-based 
solid dispersions can effectively increase its solubility, 
promoting its absorption and bioavailability (Yeo et al., 
2020). Therefore, phosphatidylcholine-based solid dis‐
persions have broad prospects for application in pharma‐
ceutical formulations, particularly enhancing drug 
bioavailability.

5.2 Nanonization

In order to increase the full contact of aprepitant 
with target cells and minimize the impact of food, 
aprepitant has been formulated into nanoparticle sus‐
pensions (Muñoz and Coveñas, 2020b; Kakade et al., 
2022; Liu et al., 2022a). The elevated number of 
nanoparticles and the presence of vesicles in cells have 
been shown to increase the transport rate and utilization 
of aprepitant in the blood plasma (Roos et al., 2017).

5.3 Nanoencapsulation

Nanoparticles as drug delivery systems can help 
improve drug efficacy and reduce drug toxicity. In 
cancer treatment, the application of nanoparticles can 
enhance drug efficacy through improving the charac‐
teristics listed below.

5.3.1　Stability and tolerance

Encapsulating drugs in nanoparticles can protect 
drugs from biological degradation and metabolism, 
thereby improving their stability and tolerance against 
them. This can prolong the half-life of drugs in the body, 
improve their bioavailability, reduce drug dosage and 
frequency, and decrease adverse effects (Ramírez-García 
et al., 2019).

5.3.2　Delivery and retention

Nanoparticles can facilitate the accumulation and 
uptake of drugs in diseased tissues through the leaky 
vascular system and poor lymphatic drainage in tumors. 
Moreover, nanoparticles can be actively taken up by 
tumor cells, thereby improving drug delivery and re‐
tention (Maeda et al., 2000).

5.3.3　Targeted delivery

Acidity, protease activity, and redox imbalance 
within the tumor microenvironment are common fac‐
tors that trigger nanoparticle breakdown and drug re‐
lease (Mura et al., 2013). Therefore, changes in the 
tumor metabolic microenvironment can be exploited 
to achieve the precise spatiotemporal release of drugs 
from nanoparticle encapsulation. Since many intracel‐
lular endosomal transport mechanisms are suitable 
for nanomedicines (Ramírez-García et al., 2019), 
nanoparticle-mediated drug delivery is highly effec‐
tive for intracellular signaling molecules. Soft poly‐
mer nanoparticles have been designed to respond to 
intracellular pH changes, specifically targeting the 
NK-1R in acidified endosomes to precisely inhibit the 
intracellular signaling events that cause chronic pain. 
When injected into bodies, nanoparticles containing 
aprepitant inhibit SP-induced spinal neuron activa‐
tion and consistently prevent pain transmission. In this 
way, nanoparticle therapy can provide a completely 
persistent relief from nociceptive, inflammatory, and 
neuropathic pain, offering an alternative to opioids 
for chronic pain treatment (Ramírez-García et al., 
2019).

In summary, nanoparticles as an effective drug 
delivery system have broad prospects for application in 
cancer treatment. By improving drug stability, delivery, 
retention, and targeting, they can significantly improve 
drug efficacy while reducing toxicity, bringing new 
opportunities and challenges into cancer treatment.

6 Aprepitant in radioligand receptor-targeted 
therapy 

Radioligand receptor-targeted therapy is a treat‐
ment method that uses a radiolabeled specific ligand 
to bind to certain overexpressed receptors during the 
tumor cell differentiation and proliferation process. 
This leads to the accumulation of a large amount of 
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radioactive isotopes in the tumor site for internal 
irradiation (Miao and Quinn, 2021). A prerequisite for 
targeted radionuclide therapies is the identification of 
a suitable molecular target with specificity for a par‐
ticular pathology. Commonly, many malignancies are 
characterized by infiltration, unclear margins, or sys‐
temic spread of metastases; only the selective binding 
of radiopharmaceuticals to molecular targets can form 
reliable imaging or safe tumor lesion ablation with 
minimal side effects.

Based on the above findings, Ewa GNIAZDOWSKA 
and colleagues designed the synthesis of radiolabeled 
conjugates of aprepitant with gallium-68 or lutetium-
177 to perform in vitro affinity evaluations. Among 
them, the 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid (DOTA) amide conjugate showed sat‐
isfactory stability in human serum. By evaluating the 
effect of the linker on the lipophilicity of radiolabeled 
conjugates, it was shown that suitable alkyl amine de‐
rivatives are more promising bio-carriers with charac‐
teristics closer to the parent drug aprepitant (Halik 
et al., 2020, 2022).

Most importantly, aprepitant is a relatively safe 
drug approved for clinical use with known pharmaco‐
logical characteristics (Muñoz and Rosso, 2010). Over‐
all, it can be used to create radiolabeled conjugates for 
the imaging and therapy of cancers overexpressing 
NK-1R, serving as a potential therapeutic diagnostic 
radiopharmaceutical in a targeted radiolabeled system 
for the treatment of NK-1R-positive tumors.

7 Combination therapy of NK-1R antagonists 
with other drugs 

The synergistic effects of NK-1R antagonists re‐
garding anti-tumor activity and cancer cell growth in‐
hibition in combination with other drugs have been 
confirmed by multiple studies. In vitro experiments have 
shown that the microtubule destabilizer agent (MDA) 
in combination with NK-1R antagonist has synergis‐
tic toxicity and acts by promoting apoptosis in human 
glioblastoma, bladder cancer, cervical cancer, and breast 
cancer cells (Kitchens et al., 2009).

The combined application of aprepitant and 
ritonavir has been shown to have a more significant 
synergistic cytotoxic effect on human glioblastoma 
cells; the combination of these two drugs along with 

temozolomide produces an even stronger synergistic 
effect (Kast et al., 2016).

Our previous study showed that combining apre‐
pitant with the cytosine arabinoside (Ara-C) can make 
acute myeloid leukemia (AML) cells more sensitive 
to the cytotoxic effects of Ara-C. The combination of 
low-dose Ara-C and aprepitant can provide a more ef‐
fective treatment for AML both in vitro and in vivo, 
while reducing the toxicity of Ara-C. This observation 
may open up new avenues for the clinical use of con‐
ventional chemotherapy drugs (Wu et al., 2020). Be‐
sides, NK-1R antagonists can not only play a syner‐
gistic anti-tumor role in radiotherapy or chemotherapy 
but also reduce the side effects of these two treatment 
strategies (Muñoz and Coveñas, 2020b). For example, 
the cardiac toxicity of doxorubicin is mediated by the 
SP/NK-1R system. It is known that aprepitant can re‐
duce cardiac toxicity while increasing the sensitivity 
of tumor cells to doxorubicin (Robinson et al., 2016).

In preclinical studies, it has been shown that 
aprepitant has a protective effect against liver and 
kidney toxicity caused by the chemotherapy drug cis‐
platin (Un et al., 2020). Aprepitant also inhibits the 
cutaneous (such as nasal nodules, crusting, skin red‐
ness, and hair loss) and neuroinflammatory side ef‐
fects mediated by erlotinib, an epidermal growth fac‐
tor receptor-tyrosine kinase inhibitor. Erlotinib induces 
an increased level of SP expression, a side effect medi‐
ated through the SP/NK-1R system, which is alleviated 
by the NK-1R antagonist aprepitant, including a de‐
crease in the amount of NK-1R expressed in the skin 
(Fig. 3).

8 Conclusions and outlook 

Taken together, the SP/NK-1R system is involved 
in various pathophysiological disorders. Recent onco‐
logical studies have shown a strong link between 
increased NK-1R expression, activation of the SP/
NK-1R system, and the progression of different types 
of cancer with poor prognosis. These findings collec‐
tively suggest that using NK-1R antagonists to modu‐
late the SP/NK-1R system could be a promising broad-
spectrum approach for antitumor and pathophysiologic‑
al disease therapy. However, certain shortcomings, 
such as low water solubility and poor bioavailability, 
limit the clinical development of these drugs, while 
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several strategies have been explored to overcome 
these drawbacks. Additionally, aprepitant has been 
developed as a radioligand receptor for targeting tu‐
mors that overexpress NK-1R in radiopharmaceut‑
ical therapy. Combining NK-1R antagonists with other 
drugs can also enhance their therapeutic effects, alle‐
viate symptoms, and improve the quality of life of 
patients with various diseases and cancers. Overall, 
NK-1R antagonists show great potential in the treat‐
ment of multiple diseases and cancers, and we are 
looking forward to exploit their potential applica‐
tions in additional pathophysiological disorders and 
tumors.
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