无数据
Scan QR Code
1.National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650107, China
2.Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650201, China
3.Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming650500, China
4.Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming650500, China
5.University of Chinese Academy of Sciences, Beijing101408, China
Published: 15 November 2024 ,
Received: 06 June 2024 ,
Revised: 25 September 2024 ,
任晓峰,王慧敏,吕小满等.恒河猴和食蟹猴脑疾病模型的标准化日常行为采集和分析系统的建立及其在孤独症谱系障碍中的应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(11):972-995.
XIAOFENG REN, HUIMIN WANG, XIAOMAN LV, et al. Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(11): 972-995.
任晓峰,王慧敏,吕小满等.恒河猴和食蟹猴脑疾病模型的标准化日常行为采集和分析系统的建立及其在孤独症谱系障碍中的应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(11):972-995. DOI: 10.1631/jzus.B2400294.
XIAOFENG REN, HUIMIN WANG, XIAOMAN LV, et al. Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(11): 972-995. DOI: 10.1631/jzus.B2400294.
复杂脑疾病严重危害人类健康,目前缺乏早期诊断生物标志物和有效的治疗方法。由于人类研究受到伦理的限制,猴模型的建立对解决这些问题至关重要。随着转基因技术的快速发展,一系列脑疾病,尤其是孤独症谱系障碍(ASD)的转基因猴模型已被成功建立。然而,要建立实用、有效的脑疾病模型,并将其应用于疾病机理和治疗研究中,目前还缺乏一个标准的工具,即脑疾病模型猴的日常行为采集和分析系统。因此,我们以行为表型的全面、定量研究为目标,针对模型构建中常用的恒河猴和食蟹猴,建立了一个标准的日常行为采集和分析系统,包括行为数据采集方法和猴日常行为目录(MDBE)。然后,我们以ASD为应用实例,参考广泛用于临床疾病和模型研究的《精神障碍诊断与统计手册》(第五版,修订版)(DSM-5-TR)中的ASD核心临床症状,基于MDBE建立了一个用于ASD猴模型核心临床症状定量评估的子行为目录(ASD猴核心行为目录(MCBE-ASD))。随后,我们通过实验数据证明了该系统的高度可重复性,并比较了不同恒河猴个体间行为模式的差异。
Complex brain diseases seriously endanger human health
and early diagnostic biomarkers and effective treatments are currently lacking. Due to ethical constraints on human research
establishing monkey models is crucial to address these issues. With the rapid development of technology
transgenic monkey models of a range of brain diseases
especially autism spectrum disorder (ASD)
have been successfully established. However
to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies
there is still a lack of a standard tool
i.e.
a system for collecting and analyzing the daily behaviors of brain disease model monkeys. Therefore
with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes
we established a standard daily behavior collection and analysis system
including behavioral data collection protocols and a monkey daily behavior ethogram (MDBE) for rhesus and cynomolgus monkeys
which are the most commonly used non-human primates in model construction. Then
we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders
Fifth Edition
Text Revision (DSM-5-TR)
which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms. We then established a sub-ethogram (ASD monkey core behavior ethogram (MCBE-ASD)) specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE. Subsequently
we demonstrated the high reproducibility of the system.
猴日常行为目录猴行为采集方法恒河猴食蟹猴孤独症谱系障碍(ASD)
Monkey daily behavior ethogramMonkey behavior collection protocolRhesus monkeyCynomolgus monkeyAutism spectrum disorder (ASD)
Altmann J, 1974. Observational study of behavior: sampling methods. Behaviour, 49(3):227-267. https://doi.org/10.1163/156853974x00534https://doi.org/10.1163/156853974x00534
Balzamo E, van Beers P, Lagarde D, 1998. Scoring of sleep and wakefulness by behavioral analysis from video recordings in rhesus monkeys: comparison with conventional EEG analysis. Electroencephalogr Clin Neurophysiol, 106(3):206-212. https://doi.org/10.1016/s0013-4694(97)00152-1https://doi.org/10.1016/s0013-4694(97)00152-1
Camus SM, Rochais C, Blois-Heulin C, et al., 2014. Depressive-like behavioral profiles in captive-bred single- and socially-housed rhesus and cynomolgus macaques: a species comparison. Front Behav Neurosci, 8:47. https://doi.org/10.3389/fnbeh.2014.00047https://doi.org/10.3389/fnbeh.2014.00047
Chan AWS, Jiang J, Chen YJ, et al., 2015. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS ONE, 10(5):e0122335. https://doi.org/10.1371/journal.pone.0122335https://doi.org/10.1371/journal.pone.0122335
Chaste P, Leboyer M, 2012. Autism risk factors: genes, environment, and gene‒environment interactions. Dialogues Clin Neurosci, 14(3):281-292. https://doi.org/10.31887/DCNS.2012.14.3/pchastehttps://doi.org/10.31887/DCNS.2012.14.3/pchaste
Chen YC, Yu JH, Niu YY, et al., 2017. Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell, 169(5):945-955.e10. https://doi.org/10.1016/j.cell.2017.04.035https://doi.org/10.1016/j.cell.2017.04.035
da Silva FS, Silva EAS, de Sousa GM, et al., 2019. Acute effects of ayahuasca in a juvenile non-human primate model of depression. Braz J Psychiatry, 41(4):280-288. https://doi.org/10.1590/1516-4446-2018-0140https://doi.org/10.1590/1516-4446-2018-0140
Feigin VL, Vos T, Alahdab F, et al., 2021. Burden of neurological disorders across the US from 1990-2017: a global burden of disease study. JAMA Neurol, 78(2):165-176. https://doi.org/10.1001/jamaneurol.2020.4152https://doi.org/10.1001/jamaneurol.2020.4152
Feng XL, Wang LN, Yang SC, et al., 2011. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci USA, 108(34):14312-14317. https://doi.org/10.1073/pnas.1010943108https://doi.org/10.1073/pnas.1010943108
Fernström AL, Sutian W, Royo F, et al., 2008. Stress in cynomolgus monkeys (Macaca fascicularis) subjected to long-distance transport and simulated transport housing conditions. Stress, 11(6):467-476. https://doi.org/10.1080/10253890801903359https://doi.org/10.1080/10253890801903359
Galvão-Coelho NL, Galvão ACM, da Silva FS, et al., 2017. Common marmosets: a potential translational animal model of juvenile depression. Front Psychiatry, 8:175. https://doi.org/10.3389/fpsyt.2017.00175https://doi.org/10.3389/fpsyt.2017.00175
Ghosh A, Michalon A, Lindemann L, et al., 2013. Drug discovery for autism spectrum disorder: challenges and opportunities. Nat Rev Drug Discov, 12(10):777-790. https://doi.org/10.1038/nrd4102https://doi.org/10.1038/nrd4102
Gibbs RA, Rogers J, Katze MG, et al., 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316(5822):222-234. https://doi.org/10.1126/science.1139247https://doi.org/10.1126/science.1139247
Griffis CM, Martin AL, Perlman JE, et al., 2013. Play caging benefits the behavior of singly housed laboratory rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci, 52(5):534-540.
Hage SR, Ott T, Eiselt AK, et al., 2014. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysiological research. Lab Anim, 48(1):82-87. https://doi.org/10.1177/0023677213514043https://doi.org/10.1177/0023677213514043
Iredale SK, Nevill CH, Lutz CK, 2010. The influence of observer presence on baboon (Papio spp.) and rhesus macaque (Macaca mulatta) behavior. Appl Anim Behav Sci, 122(1):53-57. https://doi.org/10.1016/j.applanim.2009.11.002https://doi.org/10.1016/j.applanim.2009.11.002
Kalin NH, Sheltona SE, 2003. Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci, 1008(1):189-200. https://doi.org/10.1196/annals.1301.021https://doi.org/10.1196/annals.1301.021
Li H, Wu SH, Ma X, et al., 2021. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical Parkinsonian phenotype. Neurosci Bull, 37(9):1271-1288. https://doi.org/10.1007/s12264-021-00732-6https://doi.org/10.1007/s12264-021-00732-6
Li YH, Huang ZH, Zhou QH, et al., 2019. Daily activity pattern in Assamese macaques inhabiting limestone forest, southwest Guangxi, China. Global Ecol Conserv, 20:e00709. https://doi.org/10.1016/j.gecco.2019.e00709https://doi.org/10.1016/j.gecco.2019.e00709
Lintas C, Persico AM, 2009. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet, 46(1):1-8. https://doi.org/10.1136/jmg.2008.060871https://doi.org/10.1136/jmg.2008.060871
Liu Z, Li X, Zhang JT, et al., 2016. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530(7588):98-102. https://doi.org/10.1038/nature16533https://doi.org/10.1038/nature16533
Lutz CK, 2018. A cross-species comparison of abnormal behavior in three species of singly-housed old world monkeys. Appl Anim Behav Sci, 199:52-58. https://doi.org/10.1016/j.applanim.2017.10.010https://doi.org/10.1016/j.applanim.2017.10.010
Lutz CK, Coleman K, Hopper LM, et al., 2022. Nonhuman primate abnormal behavior: etiology, assessment, and treatment. Am J Primatol, 84(6):e23380. https://doi.org/10.1002/ajp.23380https://doi.org/10.1002/ajp.23380
Maenner MJ, Warren Z, Williams AR, et al., 2023. Prevalence and characteristics of autism spectrum disorder among children aged 8 years ‒ autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ, 72(2):1-14. https://doi.org/10.15585/mmwr.ss7202a1https://doi.org/10.15585/mmwr.ss7202a1
Qiao N, Ma LZ, Zhang Y, et al., 2023. Update on nonhuman primate models of brain disease and related research tools. Biomedicines, 11(9):2516. https://doi.org/10.3390/biomedicines11092516https://doi.org/10.3390/biomedicines11092516
Qin DD, Chu XX, Feng XL, et al., 2015. The first observation of seasonal affective disorder symptoms in rhesus macaque. Behav Brain Res, 292:463-469. https://doi.org/10.1016/j.bbr.2015.07.005https://doi.org/10.1016/j.bbr.2015.07.005
Qin DD, Rizak J, Feng XL, et al., 2016. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci Rep, 6:30187. https://doi.org/10.1038/srep30187https://doi.org/10.1038/srep30187
Ronemus M, Iossifov I, Levy D, et al., 2014. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet, 15(2):133-141. https://doi.org/10.1038/nrg3585https://doi.org/10.1038/nrg3585
Stewart BM, Joyce MM, Creeggan J, et al., 2023. Primates and disability: behavioral flexibility and implications for resilience to environmental change. Am J Primatol, e23579. https://doi.org/10.1002/ajp.23579https://doi.org/10.1002/ajp.23579
Truelove MA, Martin AL, Perlman JE, et al., 2017. Two methods of social separation for paired adolescent male rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci, 56(6):729-734.
Tu ZC, Zhao H, Li B, et al., 2019. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum Mol Genet, 28(4):561-571. https://doi.org/10.1093/hmg/ddy367https://doi.org/10.1093/hmg/ddy367
Wu SH, Li X, Qin DD, et al., 2021. Induction of core symptoms of autism spectrum disorder by in vivo CRISPR/Cas9-based gene editing in the brain of adolescent rhesus monkeys. Sci Bull, 66(9):937-946. https://doi.org/10.1016/j.scib.2020.12.017https://doi.org/10.1016/j.scib.2020.12.017
Yin YY, Tian CY, Fang XX, et al., 2020. The faster-onset antidepressant effects of hypidone hydrochloride (YL-0919) in monkeys subjected to chronic unpredictable stress. Front Pharmacol, 11:586879. https://doi.org/10.3389/fphar.2020.586879https://doi.org/10.3389/fphar.2020.586879
Zhang ZY, Mao Y, Feng XL, et al., 2016. Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys. Behav Brain Res, 306:154-159. https://doi.org/10.1016/j.bbr.2016.03.040https://doi.org/10.1016/j.bbr.2016.03.040
Zhou Y, Sharma J, Ke Q, et al., 2019. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 570(7761):326-331. https://doi.org/10.1038/s41586-019-1278-0https://doi.org/10.1038/s41586-019-1278-0
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution