无数据
Scan for full text
1.Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
2.Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
3.NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
4.Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
5.Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
6.Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
Published Online: 07 April 2024 ,
Received: 20 December 2023 ,
Revised: 14 January 2024 ,
黄泰达,郭肖楠,黄小敏等.压力动态过程中负性情绪在外侧缰核的“输入-输出”特异性整合[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Taida HUANG, Xiaonan GUO, Xiaomin HUANG, et al. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 1-11(2024)
黄泰达,郭肖楠,黄小敏等.压力动态过程中负性情绪在外侧缰核的“输入-输出”特异性整合[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300933.
Taida HUANG, Xiaonan GUO, Xiaomin HUANG, et al. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 1-11(2024) DOI: 10.1631/jzus.B2300933.
压力是抑郁障碍的主要风险因素,通过在特定的脑区和神经环路产生持久的功能异常,进而导致抑郁发作。在压力积累的动态过程中,外侧缰核是大脑众多区域中处理负性情绪信息的关键枢纽,因此被认为参与抑郁症发病。外侧缰核的神经元整合了不同上游脑区输入的负性情绪效价,其中有多个上游脑区选择性支配外侧缰核内侧部或外侧部。与此同时,外侧缰核的亚区通过投射到下游不同的中脑靶区,进行负性情绪效价的分配,并且形成反馈神经环路。尽管已有这些进展,但是在压力诱发抑郁样状态的发病过程中,以外侧缰核为核心的神经环路时空动态机制依然是一个未解之谜。本综述试图提出一个理论框架,描述外侧缰核通过“输入-输出”特异性的神经元架构进行负性情绪效价的整合。值得注意的是,最近的研究揭示了外侧缰核具有一种在生理情况下响应多种压力刺激的“赫伯可塑性”,能够通过特定的上游输入促进神经元的过度兴奋,进而因果性地编码慢性压力的经历和驱动抑郁的发生。综上所述,外侧缰核神经环路的最新进展和未来展望将为抑郁症的早期干预和神经环路特异的抗抑郁疗法带来曙光。
Stress has been considered as a major risk factor for depressive disorders
triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain
the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation
thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs
many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides
the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review
we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably
a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner
which causally encodes chronic stress experience and drives depression onset. Collectively
the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.
外侧缰核神经环路厌恶压力动态抑郁样状态头对头对比
Lateral habenulaNeural circuitsAversionStress dynamicsDepression-like stateHead-to-head comparison
Aizawa H, Kobayashi M, Tanaka S, et al., 2012. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol, 520(18):4051-4066. https://doi.org/10.1002/cne.23167https://doi.org/10.1002/cne.23167
Alagapan S, Choi KS, Heisig S, et al., 2023. Cingulate dynamics track depression recovery with deep brain stimulation. Nature, 622(7981):130-138. https://doi.org/10.1038/s41586-023-06541-3https://doi.org/10.1038/s41586-023-06541-3
Amo R, Fredes F, Kinoshita M, et al., 2014. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron, 84(5):1034-1048. https://doi.org/10.1016/j.neuron.2014.10.035https://doi.org/10.1016/j.neuron.2014.10.035
Andalman AS, Burns VM, Lovett-Barron M, et al., 2019. Neuronal dynamics regulating brain and behavioral state transitions. Cell, 177(4):970-985.e20. https://doi.org/10.1016/j.cell.2019.02.037https://doi.org/10.1016/j.cell.2019.02.037
Barker DJ, Miranda-Barrientos J, Zhang SL, et al., 2017. Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep, 21(7):1757-1769. https://doi.org/10.1016/j.celrep.2017.10.066https://doi.org/10.1016/j.celrep.2017.10.066
Benekareddy M, Stachniak TJ, Bruns A, et al., 2018. Identification of a corticohabenular circuit regulating socially directed behavior. Biol Psychiatry, 83(7):607-617. https://doi.org/10.1016/j.biopsych.2017.10.032https://doi.org/10.1016/j.biopsych.2017.10.032
Bernard R, Veh RW, 2012. Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei. J Comp Neurol, 520(11):2545-2558. https://doi.org/10.1002/cne.23080https://doi.org/10.1002/cne.23080
Caldecott-Hazard S, Mazziotta J, Phelps M, 1988. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J Neurosci, 8(6):1951-1961. https://doi.org/10.1523/JNEUROSCI.08-06-01951.1988https://doi.org/10.1523/JNEUROSCI.08-06-01951.1988
Calvigioni D, Fuzik J, le Merre P, et al., 2023. Esr1+ hypothalamic-habenula neurons shape aversive states. Nat Neurosci, 26(7):1245-1255. https://doi.org/10.1038/s41593-023-01367-8https://doi.org/10.1038/s41593-023-01367-8
Cerniauskas I, Winterer J, de Jong JW, et al., 2019. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron, 104(5):899-915.e8. https://doi.org/10.1016/j.neuron.2019.09.005https://doi.org/10.1016/j.neuron.2019.09.005
Chang SY, Kim U, 2004. Ionic mechanism of long-lasting discharges of action potentials triggered by membrane hyperpolarization in the medial lateral habenula. J Neurosci, 24(9):2172-2181. https://doi.org/10.1523/JNEUROSCI.4891-03.2004https://doi.org/10.1523/JNEUROSCI.4891-03.2004
Coffey KR, Marx RE, Vo EK, et al., 2020. Chemogenetic inhibition of lateral habenula projections to the dorsal raphe nucleus reduces passive coping and perseverative reward seeking in rats. Neuropsychopharmacology, 45(7):1115-1124. https://doi.org/10.1038/s41386-020-0616-0https://doi.org/10.1038/s41386-020-0616-0
Cole EJ, Stimpson KH, Bentzley BS, et al., 2020. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry, 177(8):716-726. https://doi.org/10.1176/appi.ajp.2019.19070720https://doi.org/10.1176/appi.ajp.2019.19070720
Cole EJ, Phillips AL, Bentzley BS, et al., 2022. Stanford neuro
modulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry, 179(2):132-141. https://doi.org/10.1176/appi.ajp.2021.20101429https://doi.org/10.1176/appi.ajp.2021.20101429
Cui YH, Yang Y, Ni ZY, et al., 2018a. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature, 554(7692):323-327. https://doi.org/10.1038/nature25752https://doi.org/10.1038/nature25752
Cui YH, Yang Y, Dong YY, et al., 2018b. Decoding depression: insights from glial and ketamine regulation of neuronal burst firing in lateral habenula. Cold Spring Harb Symp Quant Biol, 83:141-150. https://doi.org/10.1101/sqb.2018.83.036871https://doi.org/10.1101/sqb.2018.83.036871
Cui YH, Hu SH, Hu HL, 2019. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci, 42(3):179-191. https://doi.org/10.1016/j.tins.2018.12.002https://doi.org/10.1016/j.tins.2018.12.002
Faget L, Osakada F, Duan JY, et al., 2016. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep, 15(12):2796-2808. https://doi.org/10.1016/j.celrep.2016.05.057https://doi.org/10.1016/j.celrep.2016.05.057
Faget L, Zell V, Souter E, et al., 2018. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun, 9:849. https://doi.org/10.1038/s41467-018-03125-yhttps://doi.org/10.1038/s41467-018-03125-y
Fox MD, Buckner RL, White MP, et al., 2012. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry, 72(7):595-603. https://doi.org/10.1016/j.biopsych.2012.04.028https://doi.org/10.1016/j.biopsych.2012.04.028
Gonçalves L, Sego C, Metzger M, 2012. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol, 520(6):1278-1300. https://doi.org/10.1002/cne.22787https://doi.org/10.1002/cne.22787
Hashikawa Y, Hashikawa K, Rossi MA, et al., 2020. Transcriptional and spatial resolution of cell types in the mammalian habenula. Neuron, 106(5):743-758.e5. https://doi.org/10.1016/j.neuron.2020.03.011https://doi.org/10.1016/j.neuron.2020.03.011
Herkenham M, Nauta WJH, 1977. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol, 173(1):123-145. https://doi.org/10.1002/cne.901730107https://doi.org/10.1002/cne.901730107
Herkenham M, Nauta WJH, 1979. Efferent connections of the habenular nuclei in the rat. J Comp Neurol, 187(1):19-47. https://doi.org/10.1002/cne.901870103https://doi.org/10.1002/cne.901870103
Hikosaka O, 2010. The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci, 11(7):503-513. https://doi.org/10.1038/nrn2866https://doi.org/10.1038/nrn2866
Hong S, Hikosaka O, 2008. The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4):720-729. https://doi.org/10.1016/j.neuron.2008.09.035https://doi.org/10.1016/j.neuron.2008.09.035
Hong S, Jhou TC, Smith M, et al., 2011. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci, 31(32):11457-11471. https://doi.org/10.1523/jneurosci.1384-11.2011https://doi.org/10.1523/jneurosci.1384-11.2011
Hu HL, Cui YH, Yang Y, 2020. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci, 21(5):277-295. https://doi.org/10.1038/s41583-020-0292-4https://doi.org/10.1038/s41583-020-0292-4
Huang L, Xi Y, Peng YF, et al., 2019. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron, 102(1):128-142.e8. https://doi.org/10.1016/j.neuron.2019.01.037https://doi.org/10.1016/j.neuron.2019.01.037
Ip CK, Rezitis J, Qi Y, et al., 2023. Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption. Neuron, 111(16):2583-2600.e6. https://doi.org/10.1016/j.neuron.2023.05.010https://doi.org/10.1016/j.neuron.2023.05.010
Jhou TC, Fields HL, Baxter MG, et al., 2009a. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5):786-800. https://doi.org/10.1016/j.neuron.2009.02.001https://doi.org/10.1016/j.neuron.2009.02.001
Jhou TC, Geisler S, Marinelli M, et al., 2009b. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol, 513(6):566-596. https://doi.org/10.1002/cne.21891https://doi.org/10.1002/cne.21891
Knowland D, Lilascharoen V, Pacia CP, et al., 2017. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell, 170(2):284-297.e18. https://doi.org/10.1016/j.cell.2017.06.015https://doi.org/10.1016/j.cell.2017.06.015
Lammel S, Lim BK, Ran C, et al., 2012. Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423):212-217. https://doi.org/10.1038/nature11527https://doi.org/10.1038/nature11527
Lammel S, Steinberg EE, Földy C, et al., 2015. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron, 85(2):429-438. https://doi.org/10.1016/j.neuron.2014.12.036https://doi.org/10.1016/j.neuron.2014.12.036
Lazaridis I, Tzortzi O, Weglage M, et al., 2019. A hypothalamus-habenula circuit controls aversion. Mol Psychiatry, 24(9):1351-1368. https://doi.org/10.1038/s41380-019-0369-5https://doi.org/10.1038/s41380-019-0369-5
Lecca S, Pelosi A, Tchenio A, et al., 2016. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat Med, 22(3):254-261. https://doi.org/10.1038/nm.4037https://doi.org/10.1038/nm.4037
Lecca S, Meye FJ, Trusel M, et al., 2017. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife, 6:e30697. https://doi.org/10.7554/eLife.30697https://doi.org/10.7554/eLife.30697
Lecca S, Congiu M, Royon L, et al., 2023. A neural substrate for negative affect dictates female parental behavior. Neuron, 111(7):1094-1103.e8. https://doi.org/10.1016/j.neuron.2023.01.003https://doi.org/10.1016/j.neuron.2023.01.003
Li B, Piriz J, Mirrione M, et al., 2011. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature, 470(7335):535-539. https://doi.org/10.1038/nature09742https://doi.org/10.1038/nature09742
Li H, Vento PJ, Parrilla-Carrero J, et al., 2019a. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron, 104(5):987-999.e4. https://doi.org/10.1016/j.neuron.2019.08.040https://doi.org/10.1016/j.neuron.2019.08.040
Li H, Pullmann D, Jhou TC, 2019b. Valence-encoding in the lateral habenula arises from the entopeduncular region. eLife, 8:e41223. https://doi.org/10.7554/eLife.41223https://doi.org/10.7554/eLife.41223
Li H, Pullmann D, Cho JY, et al., 2019c. Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. eLife, 8:e41542. https://doi.org/10.7554/eLife.41542https://doi.org/10.7554/eLife.41542
Li K, Zhou T, Liao LJ, et al., 2013. βCaMKII in lateral habenula mediates core symptoms of depression. Science, 341(6149):1016-1020. https://doi.org/10.1126/science.1240729https://doi.org/10.1126/science.1240729
Lin S, Huang L, Luo ZC, et al., 2022. The ATP level in the medial prefrontal cortex regulates depressive-like behavior via the medial prefrontal cortex-lateral habenula pathway. Biol Psychiatry, 92(3):179-192. https://doi.org/10.1016/j.biopsych.2022.02.014https://doi.org/10.1016/j.biopsych.2022.02.014
Liu H, Rastogi A, Narain P, et al., 2021. Blunted diurnal firing in lateral habenula projections to dorsal raphe nucleus and delayed photoentrainment in stress-susceptible mice. PLoS Biol, 19(3):e3000709. https://doi.org/10.1371/journal.pbio.3000709https://doi.org/10.1371/journal.pbio.3000709
Malezieux M, Klein AS, Gogolla N, 2023. Neural circuits for emotion. Annu Rev Neurosci, 46:211-231. https://doi.org/10.1146/annurev-neuro-111020-103314https://doi.org/10.1146/annurev-neuro-111020-103314
Mathis VP, Williams M, Fillinger C, et al., 2021. Networks of habenula-projecting cortical neurons regulate cocaine seeking. Sci Adv, 7(45):eabj2225. https://doi.org/10.1126/sciadv.abj2225https://doi.org/10.1126/sciadv.abj2225
Matsumoto M, Hikosaka O, 2007. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148):1111-1115. https://doi.org/10.1038/nature05860https://doi.org/10.1038/nature05860
Matsumoto M, Hikosaka O, 2009. Representation of negative motivational value in the primate lateral habenula. Nat Neurosci, 12(1):77-84. https://doi.org/10.1038/nn.2233https://doi.org/10.1038/nn.2233
McEwen BS, 1998. Protective and damaging effects of stress mediators. N Engl J Med, 338(3):171-179. https://doi.org/10.1056/nejm199801153380307https://doi.org/10.1056/nejm199801153380307
McEwen BS, Bowles NP, Gray JD, et al., 2015. Mechanisms of stress in the brain. Nat Neurosci, 18(10):1353-1363. https://doi.org/10.1038/nn.4086https://doi.org/10.1038/nn.4086
Metzger M, Souza R, Lima LB, et al., 2021. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci, 53(1):65-88. https://doi.org/10.1111/ejn.14647https://doi.org/10.1111/ejn.14647
Meye FJ, Soiza-Reilly M, Smit T, et al., 2016. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse. Nat Neurosci, 19(8):1019-1024. https://doi.org/10.1038/nn.4334https://doi.org/10.1038/nn.4334
Morris JS, Smith KA, Cowen PJ, et al., 1999. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. NeuroImage, 10(2):163-172. https://doi.org/10.1006/nimg.1999.0455https://doi.org/10.1006/nimg.1999.0455
Omelchenko N, Bell R, Sesack SR, 2009. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur J Neurosci, 30(7):1239-1250. https://doi.org/10.1111/j.1460-9568.2009.06924.xhttps://doi.org/10.1111/j.1460-9568.2009.06924.x
Parekh PK, Johnson SB, Liston C, 2022. Synaptic mechanisms regulating mood state transitions in depression. Annu Rev Neurosci, 45:581-601. https://doi.org/10.1146/annurev-neuro-110920-040422https://doi.org/10.1146/annurev-neuro-110920-040422
Proulx CD, Hikosaka O, Malinow R, 2014. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci, 17(9):1146-1152. https://doi.org/10.1038/nn.3779https://doi.org/10.1038/nn.3779
Proulx CD, Aronson S, Milivojevic D, et al., 2018. A neural pathway controlling motivation to exert effort. Proc Natl Acad Sci USA, 115(22):5792-5797. https://doi.org/10.1073/pnas.1801837115https://doi.org/10.1073/pnas.1801837115
Quina LA, Tempest L, Ng L, et al., 2015. Efferent pathways of the mouse lateral habenula. J Comp Neurol, 523(1):32-60. https://doi.org/10.1002/cne.23662https://doi.org/10.1002/cne.23662
Riva-Posse P, Crowell AL, Wright K, et al., 2020. Rapid antidepressant effects of deep brain stimulation and their relation to surgical protocol. Biol Psychiatry, 88(8):e37-e39. https://doi.org/10.1016/j.biopsych.2020.03.017https://doi.org/10.1016/j.biopsych.2020.03.017
Root DH, Mejias-Aponte CA, Qi J, et al., 2014a. Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J Neurosci, 34(42):13906-13910. https://doi.org/10.1523/JNEUROSCI.2029-14.2014https://doi.org/10.1523/JNEUROSCI.2029-14.2014
Root DH, Mejias-Aponte CA, Zhang SL, et al., 2014b. Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci, 17(11):1543-1551. https://doi.org/10.1038/nn.3823https://doi.org/10.1038/nn.3823
Root DH, Barker DJ, Estrin DJ, et al., 2020. Distinct signaling by ventral tegmental area glutamate, GABA, and combinatorial glutamate-GABA neurons in motivated behavior. Cell Rep, 32(9):108094. https://doi.org/10.1016/j.celrep.2020.108094https://doi.org/10.1016/j.celrep.2020.108094
Rossi MA, Basiri ML, Liu YJ, et al., 2021. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron, 109(23):3823-3837.e6. https://doi.org/10.1016/j.neuron.2021.09.020https://doi.org/10.1016/j.neuron.2021.09.020
Russo SJ, Nestler EJ, 2013. The brain reward circuitry in mood disorders. Nat Rev Neurosci, 14(9):609-625. https://doi.org/10.1038/nrn3381https://doi.org/10.1038/nrn3381
Sartorius A, Kiening KL, Kirsch P, et al., 2010. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry, 67(2):e9-e11. https://doi.org/10.1016/j.biopsych.2009.08.027https://doi.org/10.1016/j.biopsych.2009.08.027
Sego C, Gonçalves L, Lima L, et al., 2014. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol, 522(7):1454-1484. https://doi.org/10.1002/cne.23533https://doi.org/10.1002/cne.23533
Seo JS, Zhong P, Liu A, et al., 2018. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry, 23(5):1113-1119. https://doi.org/10.1038/mp.2017.96https://doi.org/10.1038/mp.2017.96
Shabel SJ, Proulx CD, Trias A, et al., 2012. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron, 74(3):475-481. https://doi.org/10.1016/j.neuron.2012.02.037https://doi.org/10.1016/j.neuron.2012.02.037
Shabel SJ, Wang CY, Monk B, et al., 2019. Stress transforms lateral habenula reward responses into punishment signals. Proc Natl Acad Sci USA, 116(25):12488-12493. https://doi.org/10.1073/pnas.1903334116https://doi.org/10.1073/pnas.1903334116
Spix TA, Nanivadekar S, Toong N, et al., 2021. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science, 374(6564):201-206. https://doi.org/10.1126/science.abi7852https://doi.org/10.1126/science.abi7852
Stamatakis AM, Stuber GD, 2012. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci, 15(8):1105-1107. https://doi.org/10.1038/nn.3145https://doi.org/10.1038/nn.3145
Stamatakis AM, Jennings JH, Ung RL, et al., 2013. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4):1039-1053. https://doi.org/10.1016/j.neuron.2013.08.023https://doi.org/10.1016/j.neuron.2013.08.023
Stamatakis AM, van Swieten M, Basiri ML, et al., 2016. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J Neurosci, 36(2):302-311. https://doi.org/10.1523/Jneurosci.1202-15.2016https://doi.org/10.1523/Jneurosci.1202-15.2016
Stephenson-Jones M, Floros O, Robertson B, et al., 2012. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci USA, 109(3):E164-E173. https://doi.org/10.1073/pnas.1119348109https://doi.org/10.1073/pnas.1119348109
Stephenson-Jones M, Yu K, Ahrens S, et al., 2016. A basal ganglia circuit for evaluating action outcomes. Nature, 539(7628):289-293. https://doi.org/10.1038/nature19845https://doi.org/10.1038/nature19845
Stephenson-Jones M, Bravo-Rivera C, Ahrens S, et al., 2020. Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviors. Neuron, 105(5):921-933.e5. https://doi.org/10.1016/j.neuron.2019.12.006https://doi.org/10.1016/j.neuron.2019.12.006
St. Laurent R, Martinez Damonte V, Tsuda AC, et al., 2020. Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity. Neuron, 106(4):624-636.e4. https://doi.org/10.1016/j.neuron.2020.02.029https://doi.org/10.1016/j.neuron.2020.02.029
Sylwestrak EL, Jo Y, Vesuna S, et al., 2022. Cell-type-specific population dynamics of diverse reward computations. Cell, 185(19):3568-3587.e27. https://doi.org/10.1016/j.cell.2022.08.019https://doi.org/10.1016/j.cell.2022.08.019
Szőnyi A, Zichó K, Barth AM, et al., 2019. Median raphe controls acquisition of negative experience in the mouse. Science, 366(6469):eaay8746. https://doi.org/10.1126/science.aay8746https://doi.org/10.1126/science.aay8746
Takahashi A, Durand-de Cuttoli R, Flanigan ME, et al., 2022. Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice. Nat Commun, 13:4039. https://doi.org/10.1038/s41467-022-31728-zhttps://doi.org/10.1038/s41467-022-31728-z
Tian J, Uchida N, 2015. Habenula lesions reveal that multiple mechanisms underlie dopamine prediction errors. Neuron, 87(6):1304-1316. https://doi.org/10.1016/j.neuron.2015.08.028https://doi.org/10.1016/j.neuron.2015.08.028
Tooley J, Marconi L, Alipio JB, et al., 2018. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol Psychiatry, 83(12):1012-1023. https://doi.org/10.1016/j.biopsych.2018.01.003https://doi.org/10.1016/j.biopsych.2018.01.003
Trusel M, Nuno-Perez A, Lecca S, et al., 2019. Punishment-predictive cues guide avoidance through potentiation of hypothalamus-to-habenula synapses. Neuron, 102(1):120-127.e4. https://doi.org/10.1016/j.neuron.2019.01.025https://doi.org/10.1016/j.neuron.2019.01.025
Vento PJ, Burnham NW, Rowley CS, et al., 2017. Learning from one’s mistakes: a dual role for the rostromedial tegmental nucleus in the encoding and expression of punished reward seeking. Biol Psychiatry, 81(12):1041-1049. https://doi.org/10.1016/j.biopsych.2016.10.018https://doi.org/10.1016/j.biopsych.2016.10.018
Wallace ML, Huang KW, Hochbaum D, et al., 2020. Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife, 9:e51271. https://doi.org/10.7554/eLife.51271https://doi.org/10.7554/eLife.51271
Wang DQ, Li Y, Feng QR, et al., 2017. Learning shapes the aversion and reward responses of lateral habenula neurons. eLife, 6:e23045. https://doi.org/10.7554/eLife.23045https://doi.org/10.7554/eLife.23045
Wang MR, Li PJ, Li ZW, et al., 2023. Lateral septum adenosine A2A receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat Commun, 14:1880. https://doi.org/10.1038/s41467-023-37601-xhttps://doi.org/10.1038/s41467-023-37601-x
Wang XY, Xu X, Chen R, et al., 2023. The thalamic reticular nucleus-lateral habenula circuit regulates depressive-like behaviors in chronic stress and chronic pain. Cell Rep, 42(10):113170. https://doi.org/10.1016/j.celrep.2023.113170https://doi.org/10.1016/j.celrep.2023.113170
Wang ZY, Cai XD, Qiu RR, et al., 2021. Case report: lateral habenula deep brain stimulation for treatment-resistant depression. Front Psychiatry, 11:616501. https://doi.org/10.3389/fpsyt.2020.616501https://doi.org/10.3389/fpsyt.2020.616501
Warden MR, Selimbeyoglu A, Mirzabekov JJ, et al., 2012. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature, 492(7429):428-432. https://doi.org/10.1038/nature11617https://doi.org/10.1038/nature11617
Weiss T, Veh RW, 2011. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience, 172:74-93. https://doi.org/10.1016/j.neuroscience.2010.10.047https://doi.org/10.1016/j.neuroscience.2010.10.047
Wilcox KS, Gutnick MJ, Christoph GR, 1988. Electrophysiological properties of neurons in the lateral habenula nucleus: an in vitro study. J Neurophysiol, 59(1):212-225. https://doi.org/10.1152/jn.1988.59.1.212https://doi.org/10.1152/jn.1988.59.1.212
Williams NR, Sudheimer KD, Bentzley BS, et al., 2018. High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression. Brain, 141(3):e18. https://doi.org/10.1093/brain/awx379https://doi.org/10.1093/brain/awx379
Winters ND, Kondev V, Loomba N, et al., 2023. Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission. Cell Rep, 42(3):112159. https://doi.org/10.1016/j.celrep.2023.112159https://doi.org/10.1016/j.celrep.2023.112159
Wirtshafter D, Asin KE, Pitzer MR, 1994. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res, 633(1-2):21-26. https://doi.org/10.1016/0006-8993(94)91517-2https://doi.org/10.1016/0006-8993(94)91517-2
Yang HB, Yang JH, Xi W, et al., 2016. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci, 19(2):283-289. https://doi.org/10.1038/nn.4208https://doi.org/10.1038/nn.4208
Yang SH, Yang E, Lee J, et al., 2023. Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice. Nat Commun, 14:2435. https://doi.org/10.1038/s41467-023-38180-7https://doi.org/10.1038/s41467-023-38180-7
Yang Y, Cui YH, Sang KN, et al., 2018. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 554(7692):317-322. https://doi.org/10.1038/nature25509https://doi.org/10.1038/nature25509
Yoo JH, Zell V, Gutierrez-Reed N, et al., 2016. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun, 7:13697. https://doi.org/10.1038/ncomms13697https://doi.org/10.1038/ncomms13697
Zahm DS, Root DH, 2017. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav, 162:3-21. https://doi.org/10.1016/j.pbb.2017.06.004https://doi.org/10.1016/j.pbb.2017.06.004
Zhang CC, Zhang YY, Luo HC, et al., 2022. Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features. Transl Psychiatry, 12:52. https://doi.org/10.1038/s41398-022-01818-zhttps://doi.org/10.1038/s41398-022-01818-z
Zhang GW, Shen L, Zhong W, et al., 2018. Transforming sensory cues into aversive emotion via septal-habenular pathway. Neuron, 99(5):1016-1028.e5. https://doi.org/10.1016/j.neuron.2018.07.023https://doi.org/10.1016/j.neuron.2018.07.023
Zhang H, Li K, Chen HS, et al., 2018. Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats. Brain Struct Funct, 223(5):2243-2258. https://doi.org/10.1007/s00429-018-1623-3https://doi.org/10.1007/s00429-018-1623-3
Zhang YQ, Ma LY, Zhang XY, et al., 2023. Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiol Dis, 180:106069. https://doi.org/10.1016/j.nbd.2023.106069https://doi.org/10.1016/j.nbd.2023.106069
Zheng ZW, Guo C, Li M, et al., 2022. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron, 110(8):1400-1415.e6. https://doi.org/10.1016/j.neuron.2022.01.011https://doi.org/10.1016/j.neuron.2022.01.011
Zhou L, Liu MZ, Li Q, et al., 2017. Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Rep, 20(8):1991-1993. https://doi.org/10.1016/j.celrep.2017.08.032https://doi.org/10.1016/j.celrep.2017.08.032
Zhou WJ, Jin Y, Meng Q, et al., 2019. A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci, 22(10):1649-1658. https://doi.org/10.1038/s41593-019-0468-2https://doi.org/10.1038/s41593-019-0468-2
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution