无数据
Scan QR Code
1.Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan430070, China
2.State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen361021, China
Published: 15 December 2024 ,
Received: 11 December 2023 ,
Revised: 26 March 2024 ,
蒋月雯,潘启华,王志等.基于密码子优化的SaCas9系统高效编辑青鳉(Oryzias latipes)基因组[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(12):1083-1096.
YUEWEN JIANG, QIHUA PAN, ZHI WANG, et al. Efficient genome editing in medaka (
蒋月雯,潘启华,王志等.基于密码子优化的SaCas9系统高效编辑青鳉(Oryzias latipes)基因组[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(12):1083-1096. DOI: 10.1631/jzus.B2300899.
YUEWEN JIANG, QIHUA PAN, ZHI WANG, et al. Efficient genome editing in medaka (
CRISPR-Cas9系统属于II型CRISPR/Cas系统,作为一种有效的基因编辑工具被广泛应用于不同生物体中,但化脓性链球菌(
Streptococcus pyogenes
)Cas9(SpCas9)体积较大(4.3 kb),因此使用载体传递较为不便。本研究利用密码子优化后的金黄色葡萄球菌(
Staphylococcus aureus
)Cas9(SaCas9)系统进行了青鳉(
Oryzias latipes
)的
tyr
、
oca2
和
pax6.1
基因编辑。SaCas9片段(3.3 kb)要小,所需的原型间隔相邻基序(PAM)序列为5'-NNGRRT-3'。此外,本研究还利用tRNA-sgRNA系统在体内和体外转录表达功能性sgRNA,经SaCas9和tRNA-sgRNA的组合编辑青鳉基因组中的
tyr
基因。实验结果表明,SaCas9/sgRNA和SaCas9/tRNA-sgRNA系统均能有效编辑青鳉基因组,而PAM序列是该系统进行有效编辑的关键部分。此外,tRNA还能使sgRNA受巨细胞病毒等常见启动子的控制,从而提高系统的适应性。本研究还发现,CMV-SaCas9-tRNA-sgRNA-tRNA一体化结构在青鳉基因编辑中同样能发挥作用。综上,经密码子优化的SaCas9系统为编辑青鳉及潜在的其他鱼类基因组提供了一种更便捷的工具。
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system
belonging to the type II CRISPR/Cas system
is an effective gene-editing tool widely used in different organisms
but the size of
Streptococcus pyogenes
Cas9 (SpCas9) is quite large (4.3 kb)
which is not convenient for vector delivery. In this study
we used a codon-optimized
Staphylococcus aureus
Cas9 (SaCas9) system to edit the tyrosinase (
tyr)
oculocutaneous albinism II (
oca2
)
and paired
box 6.1 (
pax6.1
) genes in the fish model medaka
(
Oryzias latipes
)
in which the size of SaCas9 (3.3 kb) is much smaller and the necessary protospacer-adjacent motif (PAM) sequence is 5'-NNGRRT-3'. We also used a transfer RNA (tRNA)-single-guide RNA (sgRNA) system to express the functional sgRNA by transcription either
in vivo or in vitro
and the combination of SaCas9 and tRNA-sgRNA was used to edit the
tyr
gene in the medaka genome. The SaCas9/sgRNA and SaCas9/tRNA-sgRNA systems were shown to edit the medaka genome effectively
while the PAM sequence is an essential part for the efficiency of editing. Besides
tRNA can improve the flexibility of the system by enabling the sgRNA to be controlled by a common promoter such as cytomegalovirus. Moreover
the all-in-one cassette cytomegalovirus (CMV)-SaCas9-tRNA-sgRNA-tRNA is functional in medaka gene editing. Taken together
the codon-optimized SaCas9 system provides an alternative and smaller tool to edit the medaka genome and potentially other fish genomes.
金黄色葡萄球菌(Staphylococcus aureus)Cas9(SaCas9)青鳉转运核糖核酸(tRNA)基因编辑酪氨酸酶(tyr)眼皮肤白化病2型(oca2)配对盒基因6.1(pax6.1)
Staphylococcus aureus Cas9 (SaCas9)MedakaTransfer RNA(tRNA)Gene editingTyrosinase (tyr)Oculocutaneous albinism II (oca2)Paired box 6.1 (pax6.1)
Balboa D, Weltner J, Novik Y, et al., 2017. Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9. Stem Cell Res, 22:16-19. https://doi.org/10.1016/j.scr.2017.05.005https://doi.org/10.1016/j.scr.2017.05.005
Brooks AK, Gaj T, 2018. Innovations in CRISPR technology. Curr Opin Biotechnol, 52:95-101. https://doi.org/10.1016/j.copbio.2018.03.007https://doi.org/10.1016/j.copbio.2018.03.007
Chen TS, Cavari B, Schartl M, et al., 2017. Identification and expression of conserved and novel RNA variants of medaka pax6b gene. J Exp Zool Part B Mol Dev Evol, 328(5):412-422. https://doi.org/10.1002/jez.b.22742https://doi.org/10.1002/jez.b.22742
Dickinson DJ, Ward JD, Reiner DJ, et al., 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 10(10):1028-1034. https://doi.org/10.1038/Nmeth.2641https://doi.org/10.1038/Nmeth.2641
Dong FP, Xie KB, Chen YY, et al., 2017. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun, 482(4):889-895. https://doi.org/10.1016/j.bbrc.2016.11.129https://doi.org/10.1016/j.bbrc.2016.11.129
Fang J, Chen TS, Pan QH, et al., 2018. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool Part B Mol Dev Evol, 330(4):242-246. https://doi.org/10.1002/jez.b.22808https://doi.org/10.1002/jez.b.22808
Feng Y, Chen C, Han YX, et al., 2016. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9. G3 Genes Genom Genet, 6(8):2517-2521. https://doi.org/10.1534/g3.116.031914https://doi.org/10.1534/g3.116.031914
Friedland AE, Baral R, Singhal P, et al., 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol, 16:257. https://doi.org/10.1186/S13059-015-0817-8https://doi.org/10.1186/S13059-015-0817-8
Gratz SJ, Cummings AM, Nguyen JN, et al., 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4):1029-1035. https://doi.org/10.1534/genetics.113.152710https://doi.org/10.1534/genetics.113.152710
Hu ZY, Wang S, Zhang CD, et al., 2020. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol, 18(3):e3000686. https://doi.org/10.1371/journal.pbio.3000686https://doi.org/10.1371/journal.pbio.3000686
Hwang WY, Fu YF, Reyon D, et al., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3):227-229. https://doi.org/10.1038/nbt.2501https://doi.org/10.1038/nbt.2501
Jinek M, Chylinski K, Fonfara I, et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821. https://doi.org/10.1126/science.1225829https://doi.org/10.1126/science.1225829
Katayama S, Sato K, Nakazawa T, 2019. In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Sci Alliance, 3(1):e201900528. https://doi.org/10.26508/lsa.201900528https://doi.org/10.26508/lsa.201900528
Kleinstiver BP, Prew MS, Tsai SQ, et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561):481-485. https://doi.org/10.1038/nature14592https://doi.org/10.1038/nature14592
Li H, Sheng CY, Liu HB, et al., 2018. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered CRISPR-SaCas9. Front Immunol, 9:2080. https://doi.org/10.3389/fimmu.2018.02080https://doi.org/10.3389/fimmu.2018.02080
Ma CF, Zhu CZ, Zheng M, et al., 2019. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res, 6:20. https://doi.org/10.1038/s41438-018-0107-1https://doi.org/10.1038/s41438-018-0107-1
Makarova KS, Haft DH, Barrangou R, et al., 2011a. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6):467-477. https://doi.org/10.1038/nrmicro2577https://doi.org/10.1038/nrmicro2577
Makarova KS, Aravind L, Wolf YI, et al., 2011b. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct, 6:38. https://doi.org/10.1186/1745-6150-6-38https://doi.org/10.1186/1745-6150-6-38
Makarova KS, Wolf YI, Alkhnbashi OS, et al., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 13(11):722-736. https://doi.org/10.1038/nrmicro3569https://doi.org/10.1038/nrmicro3569
Mefferd AL, Kornepati AVR, Bogerd HP, et al., 2015. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA, 21(9):1683-1689. https://doi.org/10.1261/rna.051631.115https://doi.org/10.1261/rna.051631.115
Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al., 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3):733-740. https://doi.org/10.1099/mic.0.023960-0https://doi.org/10.1099/mic.0.023960-0
Nakaar V, Dare AO, Hong D, et al., 1994. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol, 14(10):6736-6742. https://doi.org/10.1128/mcb.14.10.6736-6742.1994https://doi.org/10.1128/mcb.14.10.6736-6742.1994
Numamoto M, Maekawa H, Kaneko Y, 2017. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng, 124(5):487-492. https://doi.org/10.1016/j.jbiosc.2017.06.001https://doi.org/10.1016/j.jbiosc.2017.06.001
Pan QH, Luo JZ, Jiang YW, et al., 2022. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):74-83. https://doi.org/10.1631/jzus.B2100343https://doi.org/10.1631/jzus.B2100343
Pan QH, Lu K, Luo JZ, et al., 2023a. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics, 23(2):168. https://doi.org/10.1007/s10142-023-01090-4https://doi.org/10.1007/s10142-023-01090-4
Pan QH, Luo JZ, Jiang YW, et al., 2023b. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but functionally degenerate in the eye. Gene, 872:147439. https://doi.org/10.1016/j.gene.2023.147439https://doi.org/10.1016/j.gene.2023.147439
Port F, Bullock SL, 2016. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNA. Nat Methods, 13:852-854. https://doi.org/10.1038/nmeth.3972https://doi.org/10.1038/nmeth.3972
Qi WW, Zhu T, Tian ZR, et al., 2016. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol, 16:58. https://doi.org/10.1186/s12896-016-0289-2https://doi.org/10.1186/s12896-016-0289-2
Ran FA, Cong L, Yan WX, et al., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546):186-191. https://doi.org/10.1038/nature14299https://doi.org/10.1038/nature14299
Shiraki T, Kawakami K, 2018. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep, 8:13366. https://doi.org/10.1038/s41598-018-31476-5https://doi.org/10.1038/s41598-018-31476-5
Swiech L, Heidenreich M, Banerjee A, et al., 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 33(1):102-106. https://doi.org/10.1038/nbt.3055https://doi.org/10.1038/nbt.3055
Wang LL, Yang Y, Breton C, et al., 2020. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci Adv, 6(7):eaax5701. https://doi.org/10.1126/sciadv.aax5701https://doi.org/10.1126/sciadv.aax5701
Wang QK, Liu S, Liu ZP, et al., 2018. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res, 250:21-30. https://doi.org/10.1016/j.virusres.2018.04.002https://doi.org/10.1016/j.virusres.2018.04.002
Wiedenheft B, Sternberg SH, Doudna JA, 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385):331-338. https://doi.org/10.1038/nature10886https://doi.org/10.1038/nature10886
Wu H, Liu QS, Shi H, et al., 2018. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci, 75(19):3593-3607. https://doi.org/10.1007/s00018-018-2810-3https://doi.org/10.1007/s00018-018-2810-3
Xie HH, Tang LC, He XB, et al., 2018. SaCas9 requires 5'-NNGRRT-3' PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J, 13(3):1800080. https://doi.org/10.1002/biot.201800080https://doi.org/10.1002/biot.201800080
Xie KB, Minkenberg B, Yang YN, 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 112(11):3570-3575. https://doi.org/10.1073/pnas.1420294112https://doi.org/10.1073/pnas.1420294112
Yang ZX, Fu YW, Zhao JJ, et al., 2022. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing. Genom Proteom Bioinf, 21(6):1206-1220. https://doi.org/10.1016/j.gpb.2022.12.003https://doi.org/10.1016/j.gpb.2022.12.003
Zhang XY, Liang PP, Ding CH, et al., 2016. Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep, 6:32565. https://doi.org/10.1038/srep32565https://doi.org/10.1038/srep32565
Zhang YP, Wang J, Wang ZB, et al., 2019. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun, 10:1053. https://doi.org/10.1038/s41467-019-09005-3https://doi.org/10.1038/s41467-019-09005-3
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution