无数据
Scan for full text
1.Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2.School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
3.Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
4.Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo 315201, China
5.Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
6.Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
Published: 15 May 2024 ,
Published Online: 12 March 2024 ,
Received: 14 August 2023 ,
Revised: 08 October 2023 ,
来翀,杨庆玲,张雨诺等.肾上腺嗜铬细胞瘤影响三条主要代谢通路:半胱氨酸-蛋氨酸代谢、嘧啶代谢和酪氨酸代谢通路[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(05):410-421.
Chong LAI, Qingling YANG, Yunuo ZHANG, et al. Adrenal pheochromocytoma impacts three main pathways: cysteine-methionine, pyrimidine, and tyrosine metabolism. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(5):410-421(2024)
来翀,杨庆玲,张雨诺等.肾上腺嗜铬细胞瘤影响三条主要代谢通路:半胱氨酸-蛋氨酸代谢、嘧啶代谢和酪氨酸代谢通路[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(05):410-421. DOI: 10.1631/jzus.B2300579.
Chong LAI, Qingling YANG, Yunuo ZHANG, et al. Adrenal pheochromocytoma impacts three main pathways: cysteine-methionine, pyrimidine, and tyrosine metabolism. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(5):410-421(2024) DOI: 10.1631/jzus.B2300579.
嗜铬细胞瘤和副神经节瘤(PPGL)的临床症状主要是儿茶酚胺和肽类激素循环水平的改变。目前,PPGL的临床诊断主要依赖于放射影像和儿茶酚胺水平的检测。本研究使用超高效液相色谱-四级杆-飞行时间质谱分析法鉴定和测量肾上腺嗜铬细胞瘤患者手术前后血浆中的差异代谢物;通过对比嗜铬细胞瘤与正常肾上腺髓质组织的转录组数据,获得差异表达的基因列表。通过对发现数据集和验证数据集两部分代谢组学分析,发现健康组和患者组之间存在111个差异代谢物,其中53个代谢物在验证数据集中得到验证。基于差异代谢物和差异表达基因数据,研究发现半胱氨酸-蛋氨酸代谢、嘧啶代谢和酪氨酸代谢通路是嗜铬细胞瘤的三个主要改变的代谢途径。转录水平分析显示,嗜铬细胞瘤中酪氨酸代谢和半胱氨酸-蛋氨酸代谢通路均出现下调,而嘧啶代谢途径则无明显差异。最后,本研究构建了以L-二氢乳清酸和香草乙二醇为输入的最优诊断模型,并希望将L-二氢乳清酸和香草乙二醇作为潜在的临床生物标志物,用于辅助嗜铬细胞瘤的诊断。
Pheochromocytomas and paragangliomas (PPGLs) cause symptoms by altering the circulation levels of catecholamines and peptide hormones. Currently
the diagnosis of PPGLs relies on diagnostic imaging and the detection of catecholamines. In this study
we used ultra-performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis to identify and measure the perioperative differential metabolites in the plasma of adrenal pheochromocytoma patients. We identified differentially expressed genes by comparing the transcriptomic data of pheochromocytoma with the normal adrenal medulla. Through conducting two steps of metabolomics analysis
we identified 111 differential metabolites between the healthy group and the patient group
among which 53 metabolites were validated. By integrating the information of differential metabolites and differentially expressed genes
we inferred that the cysteine-methionine
pyrimidine
and tyrosine metabolism pathways were the three main metabolic pathways altered by the neoplasm. The analysis of transcription levels revealed that the tyrosine and cysteine-methionine metabolism pathways were downregulated in pheochromocytoma
whereas the pyrimidine pathway showed no significant difference. Finally
we developed an optimized diagnostic model of two metabolites
L-dihydroorotic acid and vanylglycol. Our results for these metabolites suggest that they may serve as potential clinical biomarkers and can be used to supplement and improve the diagnosis of pheochromocytoma.
嗜铬细胞瘤和副神经节瘤(PPGL)代谢组学基因组差异分析L-二氢乳清酸香草乙二醇
Pheochromocytoma and paraganglioma (PPGL)MetabolomicsGene set variation analysisL-Dihydroorotic acidVanylglycol
Aygun N, Uludag M, 2020. Pheochromocytoma and paraganglioma: from epidemiology to clinical findings. Sisli Etfal Hastan Tip Bul, 54(2):159-168. https://doi.org/10.14744/SEMB.2020.18794https://doi.org/10.14744/SEMB.2020.18794
Baxter MA, Hunter P, Thompson GR, et al., 1992. Phaeochromocytomas as a cause of hypotension. Clin Endocrinol (Oxf), 37(3):304-306. https://doi.org/10.1111/j.1365-2265.1992.tb02326.xhttps://doi.org/10.1111/j.1365-2265.1992.tb02326.x
Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol, 57(1):289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xhttps://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Chen PC, Wang CT, 2023. Rat pheochromocytoma PC12 cells in culture. In: Borges R (Ed.), Chromaffin Cells: Methods and Protocols. Humana, New York, p.3-15. https://doi.org/10.1007/978-1-0716-2671-9_1https://doi.org/10.1007/978-1-0716-2671-9_1
Dwight T, Kim E, Novos T, et al., 2019. Metabolomics in the diagnosis of pheochromocytoma and paraganglioma. Horm Metab Res, 51(7):443-450. https://doi.org/10.1055/a-0926-3790https://doi.org/10.1055/a-0926-3790
Eisenhofer G, Kopin IJ, Goldstein DS, 2004. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev, 56(3):331-349. https://doi.org/10.1124/pr.56.3.1https://doi.org/10.1124/pr.56.3.1
Erlic Z, Beuschlein F, 2019. Metabolic alterations in patients with pheochromocytoma. Exp Clin Endocrinol Diabetes, 127(2-3):129-136. https://doi.org/10.1055/a-0649-0960https://doi.org/10.1055/a-0649-0960
Farrugia FA, Charalampopoulos A, 2019. Pheochromocytoma. Endocr Regul, 53(3):191-212. https://doi.org/10.2478/enr-2019-0020https://doi.org/10.2478/enr-2019-0020
Fluss R, Faraggi D, Reiser B, 2005. Estimation of the youden index and its associated cutoff point. Biom J, 47(4):458-472. https://doi.org/10.1002/bimj.200410135https://doi.org/10.1002/bimj.200410135
Hamrin B, 1962. Sustained hypotension and shock due to an adrenaline-secreting phaeochromocytoma. Lancet, 280(7247):123-124. https://doi.org/10.1016/s0140-6736(62)90006-5https://doi.org/10.1016/s0140-6736(62)90006-5
Hänzelmann S, Castelo R, Guinney J, 2013. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14:7. https://doi.org/10.1186/1471-2105-14-7https://doi.org/10.1186/1471-2105-14-7
Huang YY, Xu KL, Liu JY, et al., 2022. Promotion of adrenal pheochromocytoma (PC-12) cell proliferation and outgrowth using Schwann cell-laden gelatin methacrylate substrate. Gels, 8(2):84. https://doi.org/10.3390/gels8020084https://doi.org/10.3390/gels8020084
Jia SM, Li CB, Lei ZQ, et al., 2021. Determinants of anxiety and depression among pheochromocytoma patients: a case-control study. Medicine (Baltimore), 100(3):e24335. https://doi.org/10.1097/MD.0000000000024335https://doi.org/10.1097/MD.0000000000024335
Jochmanova I, Pacak K, 2016. Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res, 22(20):5001-5011. https://doi.org/10.1158/1078-0432.CCR-16-0606https://doi.org/10.1158/1078-0432.CCR-16-0606
Lee S, Nakamura E, Yang HF, et al., 2005. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell, 8(2):155-167. https://doi.org/10.1016/j.ccr.2005.06.015https://doi.org/10.1016/j.ccr.2005.06.015
López-Jiménez E, Gómez-López G, Leandro-Garcia LJ, et al., 2010. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol, 24(12):2382-2391. https://doi.org/10.1210/me.2010-0256https://doi.org/10.1210/me.2010-0256
Naranjo J, Dodd S, Martin YN, 2017. Perioperative management of pheochromocytoma. J Cardiothorac Vasc Anesth, 31(4):1427-1439. https://doi.org/10.1053/j.jvca.2017.02.023https://doi.org/10.1053/j.jvca.2017.02.023
Prejbisz A, Lenders JWM, Eisenhofer G, et al., 2011. Cardiovascular manifestations of phaeochromocytoma. J Hypertens, 29(11):2049-2060. https://doi.org/10.1097/HJH.0b013e32834a4ce9https://doi.org/10.1097/HJH.0b013e32834a4ce9
Rehman T, Shabbir MA, Inam-Ur-Raheem M, et al., 2020. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr, 8(9):4696-4707. https://doi.org/10.1002/fsn3.1818https://doi.org/10.1002/fsn3.1818
Remacha L, Comino-Méndez I, Richter S, et al., 2017. Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res, 23(20):6315-6324. https://doi.org/10.1158/1078-0432.CCR-16-2250https://doi.org/10.1158/1078-0432.CCR-16-2250
Starkman MN, Cameron OG, Nesse RM, et al., 1990. Peripheral catecholamine levels and the symptoms of anxiety: studies in patients with and without pheochromocytoma. Psychosom Med, 52(2):129-142. https://doi.org/10.1097/00006842-199003000-00001https://doi.org/10.1097/00006842-199003000-00001
Ueda T, Oka N, Matsumoto A, et al., 2005. Pheochromocytoma presenting as recurrent hypotension and syncope. Intern Med, 44(3):222-227. https://doi.org/10.2169/internalmedicine.44.222https://doi.org/10.2169/internalmedicine.44.222
Wu HY, Gao TJ, Cao YW, et al., 2021. Case report: pheochromocytoma in a 59-year-old woman presenting with hypotension. Front Cardiovasc Med, 8:648725. https://doi.org/10.3389/fcvm.2021.648725https://doi.org/10.3389/fcvm.2021.648725
Wu TZ, Hu EQ, Xu SB, et al., 2021. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation, 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141https://doi.org/10.1016/j.xinn.2021.100141
Zhao HY, Zhao YZ, Jia YM, et al., 2021. Pheochromocytoma with abdominal aortic aneurysm presenting as recurrent dyspnea, hemoptysis, and hypotension: a case report. World J Clin Cases, 9(18):4754-4759. https://doi.org/10.12998/wjcc.v9.i18.4754https://doi.org/10.12998/wjcc.v9.i18.4754
Zhou Y, Tao L, Zhou X, et al., 2021. DHODH and cancer: promising prospects to be explored. Cancer Metab, 9(1):22. https://doi.org/10.1186/s40170-021-00250-zhttps://doi.org/10.1186/s40170-021-00250-z
Zuber SM, Kantorovich V, Pacak K, 2011. Hypertension in pheochromocytoma: characteristics and treatment. Endocrinol Metab Clin North Am, 40(2):295-311. https://doi.org/10.1016/j.ecl.2011.02.002https://doi.org/10.1016/j.ecl.2011.02.002
0
Views
31
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution