无数据
Scan QR Code
State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
Published: 15 September 2024 ,
Received: 21 June 2023 ,
Revised: 10 October 2023 ,
杜闻昕,朱清扬,景湘婷等.减控小青菜镉污染的高效硝化抑制剂筛选及其微生物学机制研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):773-788.
Wenxin DU, Qingyang ZHU, Xiangting JING, et al. Comparison of nitrification inhibitors for mitigating cadmium accumulation in pakchoi and their associated microbial mechanisms. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(9):773-788(2024)
杜闻昕,朱清扬,景湘婷等.减控小青菜镉污染的高效硝化抑制剂筛选及其微生物学机制研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):773-788. DOI: 10.1631/jzus.B2300449;10.1631/jzus.B2300449.
Wenxin DU, Qingyang ZHU, Xiangting JING, et al. Comparison of nitrification inhibitors for mitigating cadmium accumulation in pakchoi and their associated microbial mechanisms. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(9):773-788(2024) DOI: 10.1631/jzus.B2300449;10.1631/jzus.B2300449.
氮肥配施硝化抑制剂是一种能有效降低作物镉积累的策略。目前有多种市售硝化抑制剂,但何种硝化抑制剂具有最佳的作物镉积累减控效果及其具体作用机制尚不清楚。本研究对双氰胺(DCD)、3
4-二甲基吡唑磷酸盐(DMPP)和三氯甲基吡啶三种常用商品化硝化抑制剂减控小青菜镉污染的效果进行对比。结果表明,在施用尿素和铵态氮肥时,配施DCD和DMPP均能有效降低小青菜可食用部位镉浓度,其中DMPP效果最佳,而配施三氯甲基吡啶则无显著效果。进一步研究发现,硝化抑制剂主要通过抑制硝化作用释放质子引起的镉活化降低小青菜镉含量。此外,结构方程分析表明,土壤微生物群落结构的重塑同样在硝化抑制剂减控小青菜镉积累中发挥作用。
The use of nitrification inhibitors has been suggested as a strategy to decrease cadmium (Cd) accumulation in crops. However
the most efficient nitrification inhibitor for mitigating crop Cd accumulation remains to be elucidated
and whether and how changes in soil microbial structure are involved in this process also remains unclear. To address these questions
this study applied three commercial nitrification inhibitors
namely
dicyandiamide (DCD)
3
4-dimethylpyrazole phosphate (DMPP)
and nitrapyrin (NP)
to pakchoi. The results showed that both DCD and DMPP (but not NP) could efficiently decrease Cd concentrations in pakchoi in urea- and ammonium-fertilized soils. In addition
among the three tested nitrification inhibitors
DMPP was the most efficient in decreasing the Cd concentration in pakchoi. The nitrification inhibitors decreased pakchoi Cd concentrations by suppressing acidification-induced Cd availability and reshaping the soil microbial structure; the most effective nitrification inhibitor was DMPP. Ammonia oxidation generates the most protons during nitrification and is inhibited by nitrification inhibitors. Changes in environmental factors and predatory bacterial abundance caused by the nitrification inhibitors changed the soil microbial structure and increased the potential participants in plant Cd accumulation. In summary
our study identified DMPP as the most efficient nitrification inhibitor for mitigating crop Cd contamination and observed that the soil microbial structural changes caused by the nitrification inhibitors contributed to decreasing Cd concentration in pakchoi.
镉硝化抑制剂土壤微生物结构作物安全生产
Cadmium (Cd)Nitrification inhibitorSoil microbial structureSafe crop production
Aghnatios R, Drancourt M, 2016. Gemmata species: planctomycetes of medical interest. Future Microbiol, 11(5):659-667. https://doi.org/10.2217/fmb-2015-0001https://doi.org/10.2217/fmb-2015-0001
Amoo AE, Babalola OO, 2017. Ammonia-oxidizing microorganisms: key players in the promotion of plant growth. J Soil Sci Plant Nutr, 17(4):935-947. https://doi.org/10.4067/S0718-95162017000400008https://doi.org/10.4067/S0718-95162017000400008
Bao SD, 2000. Soil Agricultural Chemistry Analysis, 3rd Ed. China Agriculture Press, Beijing, China(in Chinese).
Bolyen E, Rideout JR, Dillon MR, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37(8):852-857. https://doi.org/10.1038/s41587-019-0209-9https://doi.org/10.1038/s41587-019-0209-9
Carneiro J, Cardenas LM, Hatch DJ, et al., 2010. Effect of the nitrification inhibitor dicyandiamide on microbial communities and N2O from an arable soil fertilized with ammonium sulphate. Environ Chem Lett, 8(3):237-246. https://doi.org/10.1007/s10311-009-0212-3https://doi.org/10.1007/s10311-009-0212-3
Chen H, Jiang W, 2014. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol, 5:508. https://doi.org/10.3389/fmicb.2014.00508https://doi.org/10.3389/fmicb.2014.00508
Chen YM, Ding QB, Chao YQ, et al., 2018. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Sci Total Environ, 644:1591-1601. https://doi.org/10.1016/j.scitotenv.2018.07.095https://doi.org/10.1016/j.scitotenv.2018.07.095
Clemens S, Aarts MGM, Thomine S, et al., 2013. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci, 18(2):92-99. https://doi.org/10.1016/j.tplants.2012.08.003https://doi.org/10.1016/j.tplants.2012.08.003
Cui L, Li DP, Wu ZJ, et al., 2021. Effects of nitrification inhibitors on soil nitrification and ammonia volatilization in three soils with different pH. Agronomy, 11(8):1674. https://doi.org/10.3390/agronomy11081674https://doi.org/10.3390/agronomy11081674
Dheri GS, Singh Brar M, Malhi SS, 2007. Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium‐contaminated soils. J Plant Nutr Soil Sci, 170(4):495-499. https://doi.org/10.1002/jpln.200625051https://doi.org/10.1002/jpln.200625051
Di HJ, Cameron KC, 2004. Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil. Soil Res, 42(8):927-932. https://doi.org/10.1071/SR04050https://doi.org/10.1071/SR04050
Dong J, Mao WH, Zhang GP, et al., 2007. Root excretion and plant tolerance to cadmium toxicity ‒ a review. Plant Soil Environ, 53(5):193-200. https://doi.org/10.17221/2205-PSEhttps://doi.org/10.17221/2205-PSE
Dong Z, Layzell DB, 2001. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant Soil, 229(1):1-12. https://doi.org/10.1023/A:1004810017490https://doi.org/10.1023/A:1004810017490
Dong Z, Wu L, Kettlewell B, et al., 2003. Hydrogen fertilization of soils ‒ is this a benefit of legumes in rotation? Plant Cell Environ, 26(11):1875-1879. https://doi.org/10.1046/j.1365-3040.2003.01103.xhttps://doi.org/10.1046/j.1365-3040.2003.01103.x
Gill SR, Pop M, DeBoy RT, et al., 2006. Metagenomic analysis of the human distal gut microbiome. Science, 312(5778):1355-1359. https://doi.org/10.1126/science.1124234https://doi.org/10.1126/science.1124234
Guan MY, Fan SK, Fang XZ, et al., 2015. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots. Plant Signal Behav, 10(3):e990794. https://doi.org/10.4161/15592324.2014.990794https://doi.org/10.4161/15592324.2014.990794
Jackson AP, Alloway BJ, 1991. The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludges. Plant Soil, 132(2):179-186. https://doi.org/10.1007/BF00010398https://doi.org/10.1007/BF00010398
Jung MY, Sedlacek CJ, Kits KD, et al., 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J, 16(1):272-283. https://doi.org/10.1038/s41396-021-01064-zhttps://doi.org/10.1038/s41396-021-01064-z
Kelliher FM, Clough TJ, Clark H, et al., 2008. The temperature dependence of dicyandiamide (DCD) degradation in soils: a data synthesis. Soil Biol Biochem, 40(7):1878-1882. https://doi.org/10.1016/j.soilbio.2008.03.013https://doi.org/10.1016/j.soilbio.2008.03.013
Kirkham MB, 2006. Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2):19-32. https://doi.org/10.1016/j.geoderma.2006.08.024https://doi.org/10.1016/j.geoderma.2006.08.024
Kits KD, Sedlacek CJ, Lebedeva EV, et al., 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549(7671):269-272. https://doi.org/10.1038/nature23679https://doi.org/10.1038/nature23679
Kleineidam K, Košmrlj K, Kublik S, et al., 2011. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere, 84(1):182-186. https://doi.org/10.1016/j.chemosphere.2011.02.086https://doi.org/10.1016/j.chemosphere.2011.02.086
Leibold MA, McPeek MA, 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87(6):1399-1410. https://doi.org/10.1890/0012-9658(2006)87https://doi.org/10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
Lewis KA, Tzilivakis J, Warner DJ, et al., 2016. An international database for pesticide risk assessments and management. Human Ecol Risk Assess: An Int J, 22(4):1050-1064. https://doi.org/10.1080/10807039.2015.1133242https://doi.org/10.1080/10807039.2015.1133242
Li HF, Abbas T, Cai M, et al., 2021. Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting. Environ Pollut, 275:116542. https://doi.org/10.1016/j.envpol.2021.116542https://doi.org/10.1016/j.envpol.2021.116542
Li YC, Jiang JQ, Zhang LD, et al., 2023. Impact and its mechanism of alkaline functional fertilizer on cadmium activity in soil. J Soils Sediments, 23(11):399 https://doi.org/10.1007/s11368-023-03571-2https://doi.org/10.1007/s11368-023-03571-2
Lin JH, Li HX, Hu F, et al., 2004. Effects of rewetting on soil biota structure and nitrogen mineralization, nitrification in air-dried red soil. Acta Pedol Sin, 41(6):924-930 (in Chinese). https://doi.org/10.11766/trxb200311070613https://doi.org/10.11766/trxb200311070613
Liu JJ, Zhang DZ, Zhang YB, et al., 2023. Regulatory effects of selenium and tellurium on alleviating cadmium toxicity and reducing grain cadmium accumulation in broomcorn millet (Panicum miliaceum). Chin Bull Bot, 58(1):62-76 (in Chinese). https://doi.org/10.11983/CBB22172https://doi.org/10.11983/CBB22172
Louca S, Parfrey LW, Doebeli M, 2016. Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305):1272-1277. https://doi.org/10.1126/science.aaf4507https://doi.org/10.1126/science.aaf4507
Luo BF, Du ST, Lu KX, et al., 2012. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot, 63(8):3127-3136. https://doi.org/10.1093/jxb/ers036https://doi.org/10.1093/jxb/ers036
Lux A, Martinka M, Vaculík M, et al., 2011. Root responses to cadmium in the rhizosphere: a review. J Exp Bot, 62(1):21-37. https://doi.org/10.1093/jxb/erq281https://doi.org/10.1093/jxb/erq281
Macadam XMB, del Prado A, Merino P, et al., 2003. Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. J Plant Physiol, 160(12):1517-1523. https://doi.org/10.1078/0176-1617-01006https://doi.org/10.1078/0176-1617-01006
Mao QQ, Guan MY, Lu KX, et al., 2014. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiol, 166(2):934-944. https://doi.org/10.1104/pp.114.243766https://doi.org/10.1104/pp.114.243766
Martens-Habbena W, Berube PM, Urakawa H, et al., 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266):976-979. https://doi.org/10.1038/nature08465https://doi.org/10.1038/nature08465
Meng DL, Li J, Liu TB, et al., 2019. Effects of redox potential on soil cadmium solubility: insight into microbial community. J Environ Sci, 75:224-232. https://doi.org/10.1016/j.jes.2018.03.032https://doi.org/10.1016/j.jes.2018.03.032
Nazar R, Iqbal N, Masood A, et al., 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci, 3(10):1476-1489. https://doi.org/10.4236/ajps.2012.310178https://doi.org/10.4236/ajps.2012.310178
O'Callaghan M, Gerard EM, Carter PE, et al., 2010. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem, 42(9):1425-1436. https://doi.org/10.1016/j.soilbio.2010.05.003https://doi.org/10.1016/j.soilbio.2010.05.003
Papadopoulou ES, Bachtsevani E, Lampronikou E, et al., 2020. Comparison of novel and established nitrification inhibitors relevant to agriculture on soil ammonia- and nitrite-oxidizing isolates. Front Microbiol, 11:581283. https://doi.org/10.3389/fmicb.2020.581283https://doi.org/10.3389/fmicb.2020.581283
Pasternak Z, Pietrokovski S, Rotem O, et al., 2013. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J, 7(4):756-769. https://doi.org/10.1038/ismej.2012.149https://doi.org/10.1038/ismej.2012.149
Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, et al., 2016. Bacterial predation: 75 years and counting! Environ Microbiol, 18(3):766-779. https://doi.org/10.1111/1462-2920.13171https://doi.org/10.1111/1462-2920.13171
Piché-Choquette S, Constant P, 2019. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol, 85(6):e02418-18. https://doi.org/10.1128/AEM.02418-18https://doi.org/10.1128/AEM.02418-18
Quast C, Pruesse E, Yilmaz P, et al., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 41(D1):D590-D596. https://doi.org/10.1093/nar/gks1219https://doi.org/10.1093/nar/gks1219
Rognes T, Flouri T, Nichols B, et al., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4:e2584. https://doi.org/10.7717/peerj.2584https://doi.org/10.7717/peerj.2584
Ryan JA, Pahren HR, Lucas JB, 1982. Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ Res, 28(2):251-302. https://doi.org/10.1016/0013-9351(82)90128-1https://doi.org/10.1016/0013-9351(82)90128-1
Sarwar N, Saifullah, Malhi S, et al., 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric, 90(6):925-937. https://doi.org/10.1002/jsfa.3916https://doi.org/10.1002/jsfa.3916
Satarug S, Garrett SH, Sens MA, et al., 2010. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect, 118(2):182-190. https://doi.org/10.1289/ehp.0901234https://doi.org/10.1289/ehp.0901234
Schaefer HR, Dennis S, Fitzpatrick S, 2020. Cadmium: mitigation strategies to reduce dietary exposure. J Food Sci, 85(2):260-267. https://doi.org/10.1111/1750-3841.14997https://doi.org/10.1111/1750-3841.14997
Schauss K, Focks A, Leininger S, et al., 2009. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol, 11(2):446-456. https://doi.org/10.1111/j.1462-2920.2008.01783.xhttps://doi.org/10.1111/j.1462-2920.2008.01783.x
Segata N, Izard J, Waldron L, et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biol, 12(6):1-18. https://doi.org/10.1186/gb-2011-12-6-r60https://doi.org/10.1186/gb-2011-12-6-r60
Shahid M, Javed MT, Mushtaq A, et al., 2019. Microbe-mediated mitigation of cadmium toxicity in plants. In: Hasanuzzaman M, Prasad MNV, Fujita M (Eds.), Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. Academic Press, Amsterdam, p.427-449. https://doi.org/10.1016/B978-0-12-814864-8.00017-6https://doi.org/10.1016/B978-0-12-814864-8.00017-6
She JY, Wang J, Wei XD, et al., 2021. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Sci Total Environ, 774:145143. https://doi.org/10.1016/j.scitotenv.2021.145143https://doi.org/10.1016/j.scitotenv.2021.145143
Shi RY, Ni N, Nkoh JN, et al., 2019. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere, 234:43-51. https://doi.org/10.1016/j.chemosphere.2019.06.030https://doi.org/10.1016/j.chemosphere.2019.06.030
Shi XZ, Hu HW, Müller C, et al., 2016. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl Environ Microbiol, 82(17):5236-5248. https://doi.org/10.1128/AEM.01031-16https://doi.org/10.1128/AEM.01031-16
Singh PP, Priyam A, Singh J, et al., 2023. Biologically synthesised urea-based nanomaterial shows enhanced agronomic benefits in maize and rice crops during Kharif season. Sci Hortic, 315:111988. https://doi.org/10.1016/j.scienta.2023.111988https://doi.org/10.1016/j.scienta.2023.111988
Singh S, Rathva HK, Sahay T, et al., 2020. Gemmata obscuriglobus: a connecting link between prokaryotic and eukaryotic cell. Biologia, 75(12):2433-2439. https://doi.org/10.2478/s11756-020-00555-2https://doi.org/10.2478/s11756-020-00555-2
Smolders E, 2001. Cadmium uptake by plants. Int J Occup Med Environ Health, 14(2):177-183.
Souza-Arroyo V, Fabián JJ, Bucio-Ortiz L, et al., 2022. The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology, 480:153339. https://doi.org/10.1016/j.tox.2022.153339https://doi.org/10.1016/j.tox.2022.153339
Stein S, Selesi D, Schilling R, et al., 2005. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biol Biochem, 37(10):1938-1945. https://doi.org/10.1016/j.soilbio.2005.02.035https://doi.org/10.1016/j.soilbio.2005.02.035
Vilsmeier K, 1980. Effect of temperature on the breakdown of dicyandiamide in the soil. Z Pflanzenernahrung Bodenkunde, 143(1):113-118.
Wang GB, Zhang QQ, Du WC, et al., 2021. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. Sci Total Environ, 769:145224. https://doi.org/10.1016/j.scitotenv.2021.145224https://doi.org/10.1016/j.scitotenv.2021.145224
Wang XW, Liu T, Chu GX, 2017. Inhibition of DCD, DMPP and nitrapyrin on soil nitrification and their appropriate use dosage. J Plant Nutr Fert, 23(1):54-61 (in Chinese). https://doi.org/10.11674/zwyf.16126https://doi.org/10.11674/zwyf.16126
Witte CP, 2011. Urea metabolism in plants. Plant Sci, 180(3):431-438. https://doi.org/10.1016/j.plantsci.2010.11.010https://doi.org/10.1016/j.plantsci.2010.11.010
Wolt JD, 2000. Nitrapyrin behavior in soils and environmental considerations. J Environ Qual, 29(2):367-379. https://doi.org/10.2134/jeq2000.00472425002900020002xhttps://doi.org/10.2134/jeq2000.00472425002900020002x
Xie HL, Jiang RF, Zhang FS, et al., 2009. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil, 318(1-2):205-215. https://doi.org/10.1007/s11104-008-9830-yhttps://doi.org/10.1007/s11104-008-9830-y
Yang YJ, Xiong J, Tao LX, et al., 2020. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci Total Environ, 708:135186. https://doi.org/10.1016/j.scitotenv.2019.135186https://doi.org/10.1016/j.scitotenv.2019.135186
You Y, Wu CN, Zhong WJ, et al., 2020. Effects of dicyandiamide on cadmium accumulation in pakchoi under instant soluble nitrogen fertilizers. Chin J Appl Ecol, 31(9):3093-3100 (in Chinese). https://doi.org/10.13287/j.1001-9332.202009.035https://doi.org/10.13287/j.1001-9332.202009.035
Yu HY, Liu CP, Zhu JS, et al., 2016. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut, 209:38-45. https://doi.org/10.1016/j.envpol.2015.11.021https://doi.org/10.1016/j.envpol.2015.11.021
Yuan QS, Wang PF, Wang X, et al., 2022. Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere, 286:131648. https://doi.org/10.1016/j.chemosphere.2021.131648https://doi.org/10.1016/j.chemosphere.2021.131648
Zerulla W, Barth T, Dressel J, et al., 2001. 3,4-Dimethylpyrazole phosphate (DMPP) ‒ a new nitrification inhibitor for agriculture and horticulture: an introduction. Biol Fert Soils, 34(2):79-84. https://doi.org/10.1007/s003740100380https://doi.org/10.1007/s003740100380
Zhang ZF, Zhang WF, 2008. The situation and trend of fertilizer application in China. Phosphate Compd Fert, 23(6):9-12 (in Chinese). https://doi.org/10.3969/j.issn.1007-6220.2008.06.003https://doi.org/10.3969/j.issn.1007-6220.2008.06.003
Zhou X, Wang SW, Ma ST, et al., 2020. Effects of commonly used nitrification inhibitors—dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma, 380:114637 https://doi.org/10.1016/j.geoderma.2020.114637https://doi.org/10.1016/j.geoderma.2020.114637
Zhu HH, Chen C, Xu C, et al., 2016. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut, 219:99-106. https://doi.org/10.1016/j.envpol.2016.10.043https://doi.org/10.1016/j.envpol.2016.10.043
Zhu YX, Du WX, Fang XZ, et al., 2020. Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants. J Hazard Mater, 384:121473. https://doi.org/10.1016/j.jhazmat.2019.121473https://doi.org/10.1016/j.jhazmat.2019.121473
Zhu YX, Zhuang Y, Sun XH, et al., 2023. Interactions between cadmium and nutrients and their implications for safe crop production in Cd-contaminated soils. Crit Rev Environ Sci Technol, 53(24):2071-2091. https://doi.org/10.1080/10643389.2023.2210985https://doi.org/10.1080/10643389.2023.2210985
Zulfiqar U, Ayub A, Hussain S, et al., 2022. Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. J Soil Sci Plant Nutr, 22(1):212-269. https://doi.org/10.1007/s42729-021-00645-3https://doi.org/10.1007/s42729-021-00645-3
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution