无数据
Scan for full text
College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
陆洪敏,郭甜甜,张悦等.内质网应激诱导的NLRP3炎性体激活是聚苯乙烯微塑料(PS-MPs)诱导的鸡肺部炎症的新机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):233-243.
Hongmin LU, Tiantian GUO, Yue ZHANG, et al. Endoplasmic reticulum stress-induced NLRP3 inflammasome activation as a novel mechanism of polystyrene microplastics (PS-MPs)-induced pulmonary inflammation in chickens. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):233-243(2024)
陆洪敏,郭甜甜,张悦等.内质网应激诱导的NLRP3炎性体激活是聚苯乙烯微塑料(PS-MPs)诱导的鸡肺部炎症的新机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):233-243. DOI: 10.1631/jzus.B2300409.
Hongmin LU, Tiantian GUO, Yue ZHANG, et al. Endoplasmic reticulum stress-induced NLRP3 inflammasome activation as a novel mechanism of polystyrene microplastics (PS-MPs)-induced pulmonary inflammation in chickens. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):233-243(2024) DOI: 10.1631/jzus.B2300409.
作为一种普遍的环境污染物,微塑料(MPs)已引起全球关注。鸡作为目前全球消费最广泛的家禽,随着消费者的需求不断上升,其饲养的安全性受到极大关注。肺是鸡生理活动中的重要器官,也是最脆弱的器官。因污染物积累导致的鸡的肺损伤难以修复,死亡率较高,给饲养者带来巨大经济损失。目前,对MPs毒性研究主要集中在海洋生态系统,而对鸡的毒性和肺损伤机制的研究相对较少。本研究主要探讨了不同浓度的聚苯乙烯微塑料(PS-MPs)暴露42天对鸡肺的影响。结果显示,PS-MPs可引起鸡肺病理和超微结构的异常,具体包括内质网肿胀、炎症细胞浸润、染色质凝集和质膜破裂。同时,PS-MPs可增加以下相关基因的表达:热休克蛋白(,Hsp60,、,Hsp70,、,Hsp90,)、内质网应激信号通路(,ATF6,、,ATF4,、,PERK,、,eIF2,α)、焦亡相关基因(,NLRP3,、,ASC,、,IL-1β,、,Caspase1,、,GSDMD,)和炎症通路(,NF-κB,、,iNOS,、,COX-2,)。综上所述,PS-MPs暴露可导致肉鸡肺应激、内质网应激、焦亡和炎症反应,为进一步研究MPs的生理健康和毒理学机制提供了新的科学线索。
Microplastics (MPs) have attracted growing attention worldwide as an increasingly prevalent environmental pollutant. In addition, chicken meat is currently the most widely consumed kind of poultry in the global market. Consumer demand for chicken is on the rise both at home and abroad. As a result, the safety of chicken raising has also received significant attention. The lungs play an essential role in the physiological activities of chickens, and they are also the most vulnerable organs. Lung injury is difficult to repair after the accumulation of contaminants, and the mortality rate is high, which brings huge economic losses to farmers. The research on the toxicity of MPs has mainly focused on the marine ecosystem, while the mechanisms of toxicity and lung damage in chickens have been poorly studied. Thus, this study explored the effects of exposure to polystyrene microplastics (PS-MPs) at various concentrations for 42 d on chicken lungs. PS-MPs could cause lung pathologies and ultrastructural abnormalities, such as endoplasmic reticulum (ER) swelling, inflammatory cell infiltration, chromatin agglutination, and plasma membrane rupture. Simultaneously, PS-MPs increased the expression of genes related to the heat shock protein family (,Hsp60,Hsp70, and ,Hsp90,), ER stress signaling (activating transcription factor 6 (,ATF6,),ATF4, protein kinase RNA-like ER kinase (,PERK,), and eukaryotic translation initiation factor 2 subunit α (,eIF2α,)), pyroptosis-related genes (NOD-, LRR- and pyrin domain-containing protein 3 (,NLRP3,), apoptosis-associated speck-like protein containing a caspase recruitment domain (,ASC,), interleukin-1β (,IL-1β,), cysteinyl aspartate-specific proteinase 1 (,Caspase1,), and gasdermin-D (,GSDMD,)), and the inflammatory signaling pathway (nuclear factor-κB (,NF-,,κB,), inducible nitric oxide synthase (,iNOS,), and cyclooxygenase-2 (,COX-2,)). The above results showed that PS-MP exposure could result in lung stress, ER stress, pyroptosis, and inflammation in broilers. Our findings provide new scientific clues for further research on the mechanisms of physical health and toxicology regarding MPs.
聚苯乙烯微塑料内质网应激肺NLRP3炎症小体炎症
Polystyrene microplasticsEndoplasmic reticulum stressLungNLRP3 inflammasomeInflammation
Akdogan Z, Guven B, 2019. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut, 254:113011. https://doi.org/10.1016/j.envpol.2019.113011https://doi.org/10.1016/j.envpol.2019.113011
Auta HS, Emenike CU, Fauziah SH, 2017. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int, 102:165-176. https://doi.org/10.1016/j.envint.2017.02.013https://doi.org/10.1016/j.envint.2017.02.013
Abd-Elmawla MA, GHAIAD HR, GAD ES, et al., 2023. Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(8):723-733. https://doi.org/10.1631/jzus.B2200385https://doi.org/10.1631/jzus.B2200385
Chi QR, Hu XY, Liu ZY, et al., 2021. H2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway. Ecotoxicol Environ Saf, 222:112488. https://doi.org/10.1016/j.ecoenv.2021.112488https://doi.org/10.1016/j.ecoenv.2021.112488
Dudeja V, Vickers SM, Saluja AK, 2009. The role of heat shock proteins in gastrointestinal diseases. Gut, 58(7):1000-1009. https://doi.org/10.1136/gut.2007.140194https://doi.org/10.1136/gut.2007.140194
Gong ZG, Zhao Y, Wang ZY, et al., 2022. Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. J Hazard Mater, 423:127110. https://doi.org/10.1016/j.jhazmat.2021.127110https://doi.org/10.1016/j.jhazmat.2021.127110
Gong J, Wang XZ, Wang T, et al., 2017. Molecular signal networks and regulating mechanisms of the unfolded protein response. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(1):1-14. https://doi.org/10.1631/jzus.B1600043https://doi.org/10.1631/jzus.B1600043
Hou BL, Wang FY, Liu T, et al., 2021. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice. J Hazard Mater, 405:124028. https://doi.org/10.1016/j.jhazmat.2020.124028https://doi.org/10.1016/j.jhazmat.2020.124028
Hou LL, Wang DX, Yin K, et al., 2022. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp Biochem Physiol Part C Toxicol Pharmacol, 262:109444. https://doi.org/10.1016/j.cbpc.2022.109444https://doi.org/10.1016/j.cbpc.2022.109444
Huang RX, Hou LY, Ruan ZZ, et al., 2020. NLRP3 inflammasome mediates 2,5-hexanedione-induced neurotoxicity through regulation of macrophage infiltration in rats. Chem Biol Interact, 330:109232. https://doi.org/10.1016/j.cbi.2020.109232https://doi.org/10.1016/j.cbi.2020.109232
Imran M, Das KR, Naik MM, 2019. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere, 215:846-857. https://doi.org/10.1016/j.chemosphere.2018.10.114https://doi.org/10.1016/j.chemosphere.2018.10.114
Jeremias I, Kupatt C, Martin-Villalba A, et al., 2000. Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation, 102(8):915-920. https://doi.org/10.1161/01.cir.102.8.915https://doi.org/10.1161/01.cir.102.8.915
Jin YX, Xia JZ, Pan ZH, et al., 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut, 235:322-329. https://doi.org/10.1016/j.envpol.2017.12.088https://doi.org/10.1016/j.envpol.2017.12.088
Lerner AG, Upton JP, Praveen PVK, 2012. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab, 16(2):250-264. https://doi.org/10.1016/j.cmet.2012.07.007https://doi.org/10.1016/j.cmet.2012.07.007
Li JH, Zhang WY, Zhou P, et al., 2022. Selenium deficiency induced apoptosis via mitochondrial pathway caused by Oxidative Stress in porcine gastric tissues. Res Vet Sci, 144:142-148. https://doi.org/10.1016/j.rvsc.2021.10.017https://doi.org/10.1016/j.rvsc.2021.10.017
Li L, 2003. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Crit Rev Oral Biol Med, 14(2):100-114. https://doi.org/10.1177/154411130301400204https://doi.org/10.1177/154411130301400204
Li N, Wang W, Jiang WY, et al., 2020. Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin Transl Med, 10(7):e228. https://doi.org/10.1002/ctm2.228https://doi.org/10.1002/ctm2.228
Lian CY, Chu BX, Xia WH, et al., 2023. Persistent activation of Nrf2 in a p62-dependent non-canonical manner aggravates lead-induced kidney injury by promoting apoptosis and inhibiting autophagy. J Adv Res, 46:87-100. https://doi.org/10.1016/j.jare.2022.04.016https://doi.org/10.1016/j.jare.2022.04.016
Liu Q, Du PY, Zhu Y, et al., 2022. Thioredoxin reductase 3 suppression promotes colitis and carcinogenesis via activating pyroptosis and necrosis. Cell Mol Life Sci,79(2):106. https://doi.org/10.1007/s00018-022-04155-yhttps://doi.org/10.1007/s00018-022-04155-y
Lu HM, Su H, Liu YC, et al., 2022. NLRP3 inflammasome is involved in the mechanism of the mitigative effect of lycopene on sulfamethoxazole-induced inflammatory damage in grass carp kidneys. Fish Shellfish Immunol, 123:348-357. https://doi.org/10.1016/j.fsi.2022.03.018https://doi.org/10.1016/j.fsi.2022.03.018
Mo JH, Ruan SY, Yang BC, et al., 2023. A novel defined risk signature of endoplasmic reticulum stress-related genes for predicting the prognosis and immune infiltration status of ovarian cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(1):64-77. https://doi.org/10.1631/jzus.B2200272https://doi.org/10.1631/jzus.B2200272
Moore CJ, 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res, 108(2):131-139. https://doi.org/10.1016/j.envres.2008.07.025https://doi.org/10.1016/j.envres.2008.07.025
Oslowski CM, Hara T, O'Sullivan-Murphy B, et al., 2012. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab, 16(2):265-273. https://doi.org/10.1016/j.cmet.2012.07.005https://doi.org/10.1016/j.cmet.2012.07.005
Overley-Adamson B, Artlett CM, Stephens C, et al., 2014. Targeting the unfolded protein response, XBP1, and the NLRP3 inflammasome in fibrosis and cancer. Cancer Biol Ther, 15(4):452-462. https://doi.org/10.4161/cbt.27820https://doi.org/10.4161/cbt.27820
Oyagbemi AA, Adejumobi OA, Jarikre TA, et al., 2022. Clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, and its molecular mechanisms of action against sodium fluoride-induced toxicity. Biol Trace Elem Res, 200(3):1220-1236. https://doi.org/10.1007/s12011-021-02722-1https://doi.org/10.1007/s12011-021-02722-1
Peng S, Gao J, Liu W, et al., 2016. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget, 7(49):80262-80274. https://doi.org/10.18632/oncotarget.12918https://doi.org/10.18632/oncotarget.12918
Qu W, Du GL, Feng B, et al., 2019. Effects of oxidative stress on blood pressure and electrocardiogram findings in workers with occupational exposure to lead. J Int Med Res, 47(6):2461-2470. https://doi.org/10.1177/0300060519842446https://doi.org/10.1177/0300060519842446
Ruan JW, Wang SJ, Wang JB, 2020. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact, 323:109052. https://doi.org/10.1016/j.cbi.2020.109052https://doi.org/10.1016/j.cbi.2020.109052
Shi JJ, Gao WQ, Shao F, 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 42(4):245-254. https://doi.org/10.1016/j.tibs.2016.10.004https://doi.org/10.1016/j.tibs.2016.10.004
Shi X, Li XJ, Sun XY, et al., 2021. Pig lung fibrosis is active in the subacute CdCl2 exposure model and exerts cumulative toxicity through the M1/M2 imbalance. Ecotoxicol Environ Saf, 225:112757. https://doi.org/10.1016/j.ecoenv.2021.112757https://doi.org/10.1016/j.ecoenv.2021.112757
Song C, Shi DM, Chang KW, et al., 2021. Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo. Free Radic Biol Med, 169:137-148. https://doi.org/10.1016/j.freeradbiomed.2021.04.007https://doi.org/10.1016/j.freeradbiomed.2021.04.007
Sun DD, Zhu H, Ai L, et al., 2021. Mitochondrial fusion protein 2 regulates endoplasmic reticulum stress in preeclampsia. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(2):165-170. https://doi.org/10.1631/jzus.B2000557https://doi.org/10.1631/jzus.B2000557
Sun T, Zhan JF, Li F, et al., 2021a. Effect of microplastics on aquatic biota: a hormetic perspective. Environ Pollut, 285:117206. https://doi.org/10.1016/j.envpol.2021.117206https://doi.org/10.1016/j.envpol.2021.117206
Sun T, Zhan JF, Li F, et al., 2021b. Environmentally relevant concentrations of microplastics influence the locomotor activity of aquatic biota. J Hazard Mater, 414:125581. https://doi.org/10.1016/j.jhazmat.2021.125581https://doi.org/10.1016/j.jhazmat.2021.125581
Wang D, Duncan B, Li XZ, et al., 2020. The role of NLRP3 inflammasome in infection-related, immune-mediated and autoimmune skin diseases. J Dermatol Sci, 98(3):146-151. https://doi.org/10.1016/j.jdermsci.2020.03.001https://doi.org/10.1016/j.jdermsci.2020.03.001
Wang Y, Zhao HJ, Liu YC, et al., 2021. Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. Environ Pollut, 274:116597. https://doi.org/10.1016/j.envpol.2021.116597https://doi.org/10.1016/j.envpol.2021.116597
Watts AJ, Urbina MA, Corr S, et al., 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ Sci Technol, 49(24):14597-14604. https://doi.org/10.1021/acs.est.5b04026https://doi.org/10.1021/acs.est.5b04026
Wu H, Guo JM, Yao YJ, et al., 2022. Polystyrene nanoplastics induced cardiomyocyte apoptosis and myocardial inflammation in carp by promoting ROS production. Fish Shellfish Immunol, 125:1-8. https://doi.org/10.1016/j.fsi.2022.04.048https://doi.org/10.1016/j.fsi.2022.04.048
Xu S, Ma J, Ji R, et al., 2020. Microplastics in aquatic environments: occurrence, accumulation, and biological effects. Sci Total Environ, 703:134699. https://doi.org/10.1016/j.scitotenv.2019.134699https://doi.org/10.1016/j.scitotenv.2019.134699
Yin K, Wang DX, Zhao HJ, et al., 2021. Microplastics pollution and risk assessment in water bodies of two nature reserves in Jilin Province: correlation analysis with the degree of human activity. Sci Total Environ, 799:149390. https://doi.org/10.1016/j.scitotenv.2021.149390https://doi.org/10.1016/j.scitotenv.2021.149390
Yin LY, Chen BJ, Xia B, et al., 2018. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater, 360:97-105. https://doi.org/10.1016/j.jhazmat.2018.07.110https://doi.org/10.1016/j.jhazmat.2018.07.110
Zhang WY, Sun XY, Shi X, et al., 2023. Subacute cadmium exposure induces necroptosis in swine lung via influencing Th1/Th2 balance. Biol Trace Elem Res, 201(1):220-228. https://doi.org/10.1007/s12011-022-03133-6https://doi.org/10.1007/s12011-022-03133-6
Zhang Y, Yin K, Wang DX, et al., 2022. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes. Sci Total Environ, 840:156727. https://doi.org/10.1016/j.scitotenv.2022.156727https://doi.org/10.1016/j.scitotenv.2022.156727
Zhao HJ, Wang Y, Liu YC, et al., 2021. ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-κB/iκB-α pathways regulated by proteasome. Environ Sci Technol, 55(9):6171-6183. https://doi.org/10.1021/acs.est.1c00515https://doi.org/10.1021/acs.est.1c00515
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution