无数据
Scan for full text
1.CMEMS-UMinho, University of Minho, Guimarães 4800-058, Portugal
2.LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
Sara PIMENTA,João R. FREITAS,José H. CORREIA.柔性神经探针:当前的优点、缺点及未来需求[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):153-167.
Sara PIMENTA, João R. FREITAS, José H. CORREIA. Flexible neural probes: a review of the current advantages, drawbacks, and future demands. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):153-167(2024)
Sara PIMENTA,João R. FREITAS,José H. CORREIA.柔性神经探针:当前的优点、缺点及未来需求[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):153-167. DOI: 10.1631/jzus.B2300337.
Sara PIMENTA, João R. FREITAS, José H. CORREIA. Flexible neural probes: a review of the current advantages, drawbacks, and future demands. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):153-167(2024) DOI: 10.1631/jzus.B2300337.
脑部疾病影响着数百万人,并对社会和经济产生巨大影响。在动物研究中,神经探针的应用一直是增进神经网络功能知识的主要途径。神经科学家正在努力开发新型且更加有效的神经疾病治疗方法。近年来,多功能神经探针(包括电学、光学和流体相互作用)的研发不断增加,产生了更高时空分辨率的设备。增加神经探针的适用性以及集成元素,促进了柔性接口的需求,减少了探针植入期间对神经组织的损伤,并提高了神经采集数据的质量。本文综述了几种柔性神经探针的制备、表征和验证,探讨了这些器件的主要优缺点。最后,对其今后的发展及应用作了展望。总体而言,本综述旨在介绍目前可用的柔性神经探针设备及其未来可能的发展途径,为未来设备设计提供指导。
Brain diseases affect millions of people and have a huge social and economic impact. The use of neural probes for studies in animals has been the main approach to increasing knowledge about neural network functioning. Ultimately, neuroscientists are trying to develop new and more effective therapeutic approaches to treating neurological disorders. The implementation of neural probes with multifunctionalities (electrical, optical, and fluidic interactions) has been increasing in the last few years, leading to the creation of devices with high temporal and spatial resolution. Increasing the applicability of, and elements integrated into, neural probes has also led to the necessity to create flexible interfaces, reducing neural tissue damage during probe implantation and increasing the quality of neural acquisition data. In this paper, we review the fabrication, characterization, and validation of several types of flexible neural probes, exploring the main advantages and drawbacks of these devices. Finally, future developments and applications are covered. Overall, this review aims to present the currently available flexible devices and future appropriate avenues for development as possible guidance for future engineered devices.
脑神经柔性接口多功能探针
Brain knowledgeFlexible interfaceMultifunctional probe
Ahmed Z, Reddy JW, Malekoshoaraie MH, et al., 2021. Flexible optoelectric neural interfaces. Curr Opin Biotechnol, 72:121-130. https://doi.org/10.1016/j.copbio.2021.11.001https://doi.org/10.1016/j.copbio.2021.11.001
Altuna A, de la Prida LM, Bellistri E, et al., 2012. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron, 37(1):1-5. https://doi.org/10.1016/j.bios.2012.03.039https://doi.org/10.1016/j.bios.2012.03.039
Altuna A, Bellistri E, Cid E, et al., 2013. SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip, 13(7):1422. https://doi.org/10.1039/c3lc41364khttps://doi.org/10.1039/c3lc41364k
Böhler C, Vomero M, Soula M, et al., 2023. Multilayer arrays for neurotechnology applications (MANTA): chronically stable thin-film intracortical implants. Adv Sci, 10(14):2207576. https://doi.org/10.1002/advs.202207576https://doi.org/10.1002/advs.202207576
Boulogeorgos AAA, Trevlakis SE, Chatzidiamantis ND, 2021. Optical wireless communications for in-body and transderm
al biomedical applications. IEEE Commun Mag, 59(1):119-125. https://doi.org/10.1109/MCOM.001.2000280https://doi.org/10.1109/MCOM.001.2000280
Castagnola V, Descamps E, Lecestre A, et al., 2015. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron, 67:450-457. https://doi.org/10.1016/j.bios.2014.09.004https://doi.org/10.1016/j.bios.2014.09.004
Cecchetto C, Vassanelli S, Kuhn B, 2021. Simultaneous two-photon voltage or calcium imaging and multi-channel local field potential recordings in barrel cortex of awake and anesthetized mice. Front Neurosci, 15:741279. https://doi.org/10.3389/fnins.2021.741279https://doi.org/10.3389/fnins.2021.741279
Chapelle F, Manciet L, Pereira B, et al., 2021. Early deformation of deep brain stimulation electrodes following surgical implantation: intracranial, brain, and electrode mechanics. Front Bioeng Biotechnol, 9:657875. https://doi.org/10.3389/fbioe.2021.657875https://doi.org/10.3389/fbioe.2021.657875
Chik GKK, Xiao N, Ji XD, et al., 2022. Flexible multichannel neural probe developed by electropolymerization for localized stimulation and sensing. Adv Mater Technol, 7(8):2200143. https://doi.org/10.1002/admt.202200143https://doi.org/10.1002/admt.202200143
Cho Y, Park S, Lee J, et al., 2021. Emerging materials and technologies with applications in flexible neural implants: a comprehensive review of current issues with neural devices. Adv Mater, 33(47):2005786. https://doi.org/10.1002/adma.202005786https://doi.org/10.1002/adma.202005786
Choi JR, Kim SM, Ryu RH, et al., 2018. Implantable neural probes for brain-machine interfaces? Current developments and future prospects. Exp Neurobiol, 27(6):453-471. https://doi.org/10.5607/en.2018.27.6.453https://doi.org/10.5607/en.2018.27.6.453
Chung JE, Joo HR, Fan JL, et al., 2019. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron, 101(1):21-31.e5. https://doi.org/10.1016/j.neuron.2018.11.002https://doi.org/10.1016/j.neuron.2018.11.002
Cointe C, Laborde A, Nowak LG, et al., 2022. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsyst Nanoeng, 8:21. https://doi.org/10.1038/s41378-022-00353-7https://doi.org/10.1038/s41378-022-00353-7
Dong XW, 2018. Current strategies for brain drug delivery. Theranostics, 8(6):1481-1493. https://doi.org/10.7150/thno.21254https://doi.org/10.7150/thno.21254
Dougherty DD, 2018. Deep brain stimulation. Psychiat Clin North Am, 41(3):385-394. https://doi.org/10.1016/j.psc.2018.04.004https://doi.org/10.1016/j.psc.2018.04.004
Fernández LJ, Altuna A, Tijero M, et al., 2009. Study of functional viability of SU-8-based microneedles for neural applications. J Micromech Microeng, 19(2):025007. https://doi.org/10.1088/0960-1317/19/2/025007https://doi.org/10.1088/0960-1317/19/2/025007
Freitas JR, Pimenta S, Ribeiro JF, et al., 2021. Simulation, fabrication and morphological characterization of a PDMS microlens for light collimation on optrodes. Optik, 227:166098. https://doi.org/10.1016/j.ijleo.2020.166098https://doi.org/10.1016/j.ijleo.2020.166098
Freitas JR, Pimenta S, Santos DJ, et al., 2022. Flexible neural probe fabrication enhanced with a low-temperature cured polyimide and platinum electrodeposition. Sensors, 22(24):9674. https://doi.org/10.3390/s22249674https://doi.org/10.3390/s22249674
Goncalves S, Palha J, Fernandes H, et al., 2018. LED optrode with integrated temperature sensing for optogenetics. Micromachines, 9(9):473. https://doi.org/10.3390/mi9090473https://doi.org/10.3390/mi9090473
Goncalves SB, Ribeiro JF, Silva AF, et al., 2017. Design and manufacturing challenges of optogenetic neural interfaces: a review. J Neural Eng, 14(4):041001. https://doi.org/10.1088/1741-2552/aa7004https://doi.org/10.1088/1741-2552/aa7004
Gupta P, Shinde A, Illath K, et al., 2022. Microfluidic platforms for single neuron analysis. Mater Today Bio, 13:100222. https://doi.org/10.1016/j.mtbio.2022.100222https://doi.org/10.1016/j.mtbio.2022.100222
Hegedüs N, Balázsi C, Kolonits T, et al., 2022. Investigation of the RF sputtering process and the properties of deposited silicon oxynitride layers under varying reactive gas conditions. Materials, 15(18):6313. https://doi.org/10.3390/ma15186313https://doi.org/10.3390/ma15186313
Jendritza P, Klein FJ, Fries P, 2023. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nat Commun, 14:577. https://doi.org/10.1038/s41467-023-36217-5https://doi.org/10.1038/s41467-023-36217-5
Jones KE, Campbell PK, Normann RA, 1992. A glass/silicon composite intracortical electrode array. Ann Biomed Eng, 20(4):423-437. https://doi.org/10.1007/BF02368134https://doi.org/10.1007/BF02368134
Jurado-González JA, Lizárraga-Medina EG, Vazquez J, et al., 2023. TiO2-x films as a prospective material for slab waveguides prepared by atomic layer deposition. Opt Laser Technol, 158:108880. https://doi.org/10.1016/j.optlastec.2022.108880https://doi.org/10.1016/j.optlastec.2022.108880
Kampasi K, Alameda J, Sahota S, et al., 2020. Design and microfabrication strategies for thin-film, flexible optical neural implant. 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, p.4314-4317. https://doi.org/10.1109/EMBC44109.2020.9175440https://doi.org/10.1109/EMBC44109.2020.9175440
Khanna A, Subramanian AZ, Häyrinen M, et al., 2014. Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths. Opt Express, 22(5):5684. https://doi.org/10.1364/OE.22.005684https://doi.org/10.1364/OE.22.005684
Kim EGR, Tu H, Luo H, et al., 2015. 3D silicon neural probe with integrated optical fibers for optogenetic modulation. Lab Chip, 15(14):2939-2949. https://doi.org/10.1039/C4LC01472Chttps://doi.org/10.1039/C4LC01472C
Kim TH, Schnitzer MJ, 2022. Fluorescence imaging of large-scale neural ensemble dynamics. Cell, 185(1):9-41. https://doi.org/10.1016/j.cell.2021.12.007https://doi.org/10.1016/j.cell.2021.12.007
Kim TI, McCall JG, Jung YH, et al., 2013. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science, 340(6129):211-216. https://doi.org/10.1126/science.1232437https://doi.org/10.1126/science.1232437
Kuo JTW, Kim BJ, Hara SA, et al., 2013. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip, 13(4):554-561. https://doi.org/10.1039/C2LC40935Fhttps://doi.org/10.1039/C2LC40935F
Lanzio V, West M, Koshelev A, et al., 2018. High-density electrical and optical probes for neural readout and light focusing in deep brain tissue. J Micro/Nanolith MEMS MOEMS, 17(2):1. https://doi.org/10.1117/1.JMM.17.2.025503https://doi.org/10.1117/1.JMM.17.2.025503
Lecomte A, Descamps E, Bergaud C, 2018. A review on mech
anical considerations for chronically-implanted neural probes. J Neural Eng, 15(3):031001. https://doi.org/10.1088/1741-2552/aa8b4fhttps://doi.org/10.1088/1741-2552/aa8b4f
Li LZ, Jiang CQ, Li LM, 2022. Hierarchical platinum‒iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity. Bio-Des Manuf, 5:163-173. https://doi.org/10.1007/s42242-021-00160-5https://doi.org/10.1007/s42242-021-00160-5
Lu CT, Zhao YZ, Wong HL, et al., 2014. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed, 9(1):2241-2257. https://doi.org/10.2147/IJN.S61288https://doi.org/10.2147/IJN.S61288
Luan L, Wei XL, Zhao ZT, et al., 2017. Ultraflexible nanoelectronic probes form reliable, glial scar‒free neural integration. Sci Adv, 3(2):e1601966. https://doi.org/10.1126/sciadv.1601966https://doi.org/10.1126/sciadv.1601966
Luo JH, Xue N, Chen JM, 2022. A review: research progress of neural probes for brain research and brain‒computer interface. Biosensors, 12(12):1167. https://doi.org/10.3390/bios12121167https://doi.org/10.3390/bios12121167
Ma L, Li YT, Wu YT, et al., 2020. 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Des Manuf, 3(3):164-174. https://doi.org/10.1007/s42242-020-00076-6https://doi.org/10.1007/s42242-020-00076-6
Maiolo L, Polese D, Convertino A, 2019. The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications. Adv Phys X, 4(1):1664319. https://doi.org/10.1080/23746149.2019.1664319https://doi.org/10.1080/23746149.2019.1664319
McAlinden N, Massoubre D, Richardson E, et al., 2013. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt Lett, 38(6):992. https://doi.org/10.1364/OL.38.000992https://doi.org/10.1364/OL.38.000992
McAlinden N, Gu ED, Dawson MD, et al., 2015. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. Front Neural Circ, 9:25. https://doi.org/10.3389/fncir.2015.00025https://doi.org/10.3389/fncir.2015.00025
McGlynn E, Nabaei V, Ren E, et al., 2021. The future of neuroscience: flexible and wireless implantable neural electronics. Adv Sci, 8(10):2002693. https://doi.org/10.1002/advs.202002693https://doi.org/10.1002/advs.202002693
Metz S, Bertsch A, Bertrand D, et al., 2004. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron, 19(10):1309-1318. https://doi.org/10.1016/j.bios.2003.11.021https://doi.org/10.1016/j.bios.2003.11.021
Mohammadi M, Zolfagharian A, Bodaghi M, et al., 2022. 4D printing of soft orthoses for tremor suppression. Bio-Des Manuf, 5(4):786-807. https://doi.org/10.1007/s42242-022-00199-yhttps://doi.org/10.1007/s42242-022-00199-y
Moreaux LC, Yatsenko D, Sacher WD, et al., 2020. Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity—at depth and in real time. Neuron, 108(1):66-92. https://doi.org/10.1016/j.neuron.2020.09.043https://doi.org/10.1016/j.neuron.2020.09.043
Na K, Sperry ZJ, Lu JA, et al., 2020. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression. Microsyst Nanoeng, 6:37. https://doi.org/10.1038/s41378-020-0149-zhttps://doi.org/10.1038/s41378-020-0149-z
Nguyen JK, Park DJ, Skousen JL, et al., 2014. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J Neural Eng, 11(5):056014. https://doi.org/10.1088/1741-2560/11/5/056014https://doi.org/10.1088/1741-2560/11/5/056014
Pardridge WM, 2012. Drug transport across the blood‒brain barrier. J Cereb Blood Flow Metab, 32(11):1959-1972. https://doi.org/10.1038/jcbfm.2012.126https://doi.org/10.1038/jcbfm.2012.126
Pimenta S, Pereira JP, Gomes NM, et al., 2018a. High-selectivity neural probe based on a Fabry‒Perot optical filter and a CMOS silicon photodiodes array at visible wavelengths. J Biomed Opt, 23(10):1. https://doi.org/10.1117/1.JBO.23.10.105004https://doi.org/10.1117/1.JBO.23.10.105004
Pimenta S, Ribeiro JF, Goncalves SB, et al., 2018b. SU-8 based waveguide for optrodes. Proceedings, 2(13):814. https://doi.org/10.3390/proceedings2130814https://doi.org/10.3390/proceedings2130814
Pimenta S, Rodrigues JA, Machado F, et al., 2021. Double-layer flexible neural probe with closely spaced electrodes for high-density in vivo brain recordings. Front Neurosci, 15:663174. https://doi.org/10.3389/fnins.2021.663174https://doi.org/10.3389/fnins.2021.663174
Pisanello F, Sileo L, de Vittorio M, 2016. Micro- and nanotechnologies for optical neural interfaces. Front Neurosci, 10:70. https://doi.org/10.3389/fnins.2016.00070https://doi.org/10.3389/fnins.2016.00070
Pothof F, Bonini L, Lanzilotto M, et al., 2016. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites. J Neural Eng, 13(4):046006. https://doi.org/10.1088/1741-2560/13/4/046006https://doi.org/10.1088/1741-2560/13/4/046006
Reddy JW, Kimukin I, Stewart LT, et al., 2019. High density, double-sided, flexible optoelectronic neural probes with embedded μLEDs. Front Neurosci, 13:745. https://doi.org/10.3389/fnins.2019.00745https://doi.org/10.3389/fnins.2019.00745
Rivnay J, Wang HL, Fenno L, et al., 2017. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv, 3(6):e1601649. https://doi.org/10.1126/sciadv.1601649https://doi.org/10.1126/sciadv.1601649
Rocha RP, Maciel MJ, Gomes JM, et al., 2014. Fabricating microlenses on photodiodes to increase the light-current conversion efficiency. IEEE Sens J, 14(5):1343-1344. https://doi.org/10.1109/JSEN.2014.2305623https://doi.org/10.1109/JSEN.2014.2305623
Rodger D, Fong A, Li W, et al., 2008. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuat B Chem, 132(2):449-460. https://doi.org/10.1016/j.snb.2007.10.069https://doi.org/10.1016/j.snb.2007.10.069
Rodrigues JA, Pimenta S, Pereira JP, et al., 2021. Low-cost silicon neural probe: fabrication, electrochemical characterization and in vivo validation. Microsyst Technol, 27:37-46. https://doi.org/10.1007/s00542-020-04898-3https://doi.org/10.1007/s00542-020-04898-3
Rousche PJ, Pellinen DS, Pivin DP, et al., 2001. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng, 48(3):361-371. https://doi.org/10.1109/10.914800https://doi.org/10.1109/10.914800
Sacher WD, Chen FD, Moradi-Chameh H, et al., 2021. Implantable photonic neural probes for light-sheet fluorescence brain imaging. Neurophotonics, 8(2):025003. https://doi.org/10.1117/1.NPh.8.2.025003https://doi.org/10.1117/1.NPh.8.2.025003
Sancataldo G, Silvestri L, Allegra Mascaro AL, et al., 2019. Advanced fluorescence microscopy for in vivo imaging of neuronal activity. Optica, 6(6):758. https://doi.org/10.1364/OPTICA.6.000758https://doi.org/10.1364/OPTICA.6.000758
Sheng H, Wang XM, Kong N, et al., 2019. Neural interfaces by hydrogels. Extreme Mech Lett, 30:100510. https://doi.org/10.1016/j.eml.2019.100510https://doi.org/10.1016/j.eml.2019.100510
Shoffstall A, Ecker M, Danda V, et al., 2018. Characterization of the neuroinflammatory response to thiol-ene shape memory polymer coated intracortical microelectrodes. Micromachines, 9(10):486. https://doi.org/10.3390/mi9100486https://doi.org/10.3390/mi9100486
Simon DM, Charkhkar H, St. John C, et al., 2017. Design and demonstration of an intracortical probe technology with tunable modulus. J Biomed Mater Res, 105(1):159-168. https://doi.org/10.1002/jbm.a.35896https://doi.org/10.1002/jbm.a.35896
Takeuchi S, Suzuki T, Mabuchi K, et al., 2004. 3D flexible multichannel neural probe array. J Micromech Microeng, 14:104-107. https://doi.org/10.1088/0960-1317/14/1/014https://doi.org/10.1088/0960-1317/14/1/014
Takeuchi S, Ziegler D, Yoshida Y, et al., 2005. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip, 5(5):519. https://doi.org/10.1039/b417497fhttps://doi.org/10.1039/b417497f
Tchoe Y, Bourhis AM, Cleary DR, et al., 2022. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Sci Transl Med, 14(628):eabj1441. https://doi.org/10.1126/scitranslmed.abj1441https://doi.org/10.1126/scitranslmed.abj1441
Testa G, Huang YJ, Zeni L, et al., 2010. Liquid core ARROW waveguides by atomic layer deposition. IEEE Photon Technol Lett, 22(9):616-618. https://doi.org/10.1109/LPT.2010.2043352https://doi.org/10.1109/LPT.2010.2043352
Thakor J, Ahadian S, Niakan A, et al., 2020. Engineered hydrogels for brain tumor culture and therapy. Bio-Des Manuf, 3(3):203-226. https://doi.org/10.1007/s42242-020-00084-6https://doi.org/10.1007/s42242-020-00084-6
Tsuchiya R, Oyamada R, Fukushima T, et al., 2022. Low-loss hydrogen-free SiNx optical waveguide deposited by reactive sputtering on a bulk Si platform. IEEE J Sel Top Quant Electron, 28(3):1-9. https://doi.org/10.1109/JSTQE.2021.3115507https://doi.org/10.1109/JSTQE.2021.3115507
Vila M, Cáceres D, Prieto C, 2003. Mechanical properties of sputtered silicon nitride thin films. J Appl Phys, 94(12):7868-7873. https://doi.org/10.1063/1.1626799https://doi.org/10.1063/1.1626799
Vomero M, Ciarpella F, Zucchini E, et al., 2022. On the longevity of flexible neural interfaces: establishing biostability of polyimide-based intracortical implants. Biomaterials, 281:121372. https://doi.org/10.1016/j.biomaterials.2022.121372https://doi.org/10.1016/j.biomaterials.2022.121372
Wang MH, Fan Y, Li LL, et al., 2022. Flexible neural probes with optical artifact-suppressing modification and biofriendly polypeptide coating. Micromachines, 13(2):199. https://doi.org/10.3390/mi13020199https://doi.org/10.3390/mi13020199
Wang XM, Wang MQ, Sheng H, et al., 2022. Subdural neural interfaces for long-term electrical recording, optical micro
scopy and magnetic resonance imaging. Biomaterials, 281:121352. https://doi.org/10.1016/j.biomaterials.2021.121352https://doi.org/10.1016/j.biomaterials.2021.121352
Weltman A, Yoo J, Meng E, 2016. Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines, 7(10):180. https://doi.org/10.3390/mi7100180https://doi.org/10.3390/mi7100180
Wen XM, 2018. Multifunctional Neural Probes for Electrochemical Sensing, Chemical Delivery and Optical Stimulation. PhD Dissemination, University of California, USA.
Wen XM, Wang B, Huang S, et al., 2019. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron, 131:37-45. https://doi.org/10.1016/j.bios.2019.01.060https://doi.org/10.1016/j.bios.2019.01.060
Wise KD, Angell JB, Starr A, 1970. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng, BME-17(3):238-247. https://doi.org/10.1109/TBME.1970.4502738https://doi.org/10.1109/TBME.1970.4502738
Wu F, Stark E, Im M, et al., 2013. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng, 10(5):056012. https://doi.org/10.1088/1741-2560/10/5/056012https://doi.org/10.1088/1741-2560/10/5/056012
Wu F, Stark E, Ku PC, et al., 2015. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron, 88(6):1136-1148. https://doi.org/10.1016/j.neuron.2015.10.032https://doi.org/10.1016/j.neuron.2015.10.032
Xiang ZL, Yen SC, Xue N, et al., 2014. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng, 24(6):065015. https://doi.org/10.1088/0960-1317/24/6/065015https://doi.org/10.1088/0960-1317/24/6/065015
Yu F, Hunziker W, Choudhury D, 2019. Engineering microfluidic organoid-on-a-chip platforms. Micromachines, 10(3):165. https://doi.org/10.3390/mi10030165https://doi.org/10.3390/mi10030165
Zátonyi A, Orbán G, Modi R, et al., 2019. A softening laminar electrode for recording single unit activity from the rat hippocampus. Sci Rep, 9:2321. https://doi.org/10.1038/s41598-019-39835-6https://doi.org/10.1038/s41598-019-39835-6
Zhao HQ, Liu RP, Zhang HL, et al., 2022. Research progress on the flexibility of an implantable neural microelectrode. Micromachines, 13(3):386. https://doi.org/10.3390/mi13030386https://doi.org/10.3390/mi13030386
Zhao YW, Wang K, Li SW, et al., 2018. Polydimethylsiloxane (PDMS)-based flexible optical electrodes with conductive composite hydrogels integrated probe for optogenetics. J Biomed Nanotechnol, 14(6):1099-1106. https://doi.org/10.1166/jbn.2018.2561https://doi.org/10.1166/jbn.2018.2561
Zhao ZG, Kim E, Luo H, et al., 2018. Flexible deep brain neural probes based on a parylene tube structure. J Micromech Microeng, 28:015012. https://doi.org/10.1088/1361-6439/aa9d61https://doi.org/10.1088/1361-6439/aa9d61
Zhou Y, Gu C, Liang JZ, et al., 2022. A silk-based self-adaptive flexible opto-electro neural probe. Microsyst Nanoeng, 8:118. https://doi.org/10.1038/s41378-022-00461-4https://doi.org/10.1038/s41378-022-00461-4
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution