无数据
Scan for full text
1.Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
2.Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
巩倩,乐萱,余鹏程等.基于动物模型的房颤治疗进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):135-152.
Qian GONG, Xuan LE, Pengcheng YU, et al. Therapeutic advances in atrial fibrillation based on animal models. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):135-152(2024)
巩倩,乐萱,余鹏程等.基于动物模型的房颤治疗进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):135-152. DOI: 10.1631/jzus.B2300285.
Qian GONG, Xuan LE, Pengcheng YU, et al. Therapeutic advances in atrial fibrillation based on animal models. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):135-152(2024) DOI: 10.1631/jzus.B2300285.
心房颤动(Atrial fibrillation, AF)是人类最常见的由持续性心律失常导致的心脏疾病,其发病率随着年龄增长而显著增加。尽管房颤在临床实践中很常见,但其病因和治疗尚不清晰。为了制定有效的治疗策略,必须了解房颤的基本机制,因此建立房颤的动物模型对于探索其发病机制至关重要。虽然自发性房颤在大多数动物中罕见,但近年来一些大型动物模型,特别是猪、狗和马模型,已被证明在推进我们对房颤发病机制认识和开发新的治疗方案方面非常宝贵。本综述旨在对房颤的各种动物模型进行全面讨论,重点介绍每种模型的特征及其在房颤研究和治疗中的效用。本综述为房颤机制提供了宝贵的见解,并可用于评估新型治疗干预措施的有效性和安全性。
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
房颤动物模型治疗
Atrial fibrillationAnimal modelTherapeutic
Aidonidis I, Simopoulos V, Dipla K, et al., 2021a. Effects of ranolazine and its combination with amiodarone on rapid pacing-induced reentrant atrial tachycardia in rabbits. J Innov Card Rhythm Manag, 12(3):4421-4427. https://doi.org/10.19102/icrm.2021.120304https://doi.org/10.19102/icrm.2021.120304
Aidonidis I, Simopoulos V, Stravela S, et al., 2021b. Ranolazine depresses conduction of rapid atrial depolarizations in a beating rabbit heart model. J Interv Card Electrophysiol, 62(1):153-159. https://doi.org/10.1007/s10840-020-00865-0https://doi.org/10.1007/s10840-020-00865-0
Ajoolabady A, Nattel S, Lip GYH, et al., 2022. Inflammasome signaling in atrial fibrillation: JACC state-of-the-art review. J Am Coll Cardiol, 79(23):2349-2366. https://doi.org/10.1016/j.jacc.2022.03.379https://doi.org/10.1016/j.jacc.2022.03.379
Alessi R, Nusynowitz M, Abildskov JA, et al., 1958. Nonuniform distribution of vagal effects on the atrial refractory period. Am J Physiol, 194(2):406-410. https://doi.org/10.1152/ajplegacy.1958.194.2.406https://doi.org/10.1152/ajplegacy.1958.194.2.406
Ammar EM, Kudrin AN, 1969. Comparative antiarrhythmic activity of beta-N-hexamethyleneimino-P-butoxypropiophenone, quinidine and novocaine amide in aconitine auricular fibrillation and flutter in cats. Farmakol Toksikol, 32(4):415-418 (in Russian).
Andersen JH, Andreasen L, Olesen MS, 2021. Atrial fibrillation—a complex polygenetic disease. Eur J Hum Genet, 29(7):1051-1060. https://doi.org/10.1038/s41431-020-00784-8https://doi.org/10.1038/s41431-020-00784-8
Aoki Y, Hatakeyama N, Yamamoto S, et al., 2012. Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br J Pharmacol, 166(1):390-400. https://doi.org/10.1111/j.1476-5381.2011.01769.xhttps://doi.org/10.1111/j.1476-5381.2011.01769.x
Arbelo E, Dagres N, 2022. The 2020 ESC atrial fibrillation guidelines for atrial fibrillation catheter ablation, CABANA, and EAST. EP Europace, 24(S2):ii3-ii7. https://doi.org/10.1093/europace/euab332https://doi.org/10.1093/europace/euab332
Bahnson TD, Giczewska A, Mark DB, et al., 2022. Associ
ation between age and outcomes of catheter ablation versus medical therapy for atrial fibrillation: results from the CABANA trial. Circulation, 145(11):796-804. https://doi.org/10.1161/CIRCULATIONAHA.121.055297https://doi.org/10.1161/CIRCULATIONAHA.121.055297
Balkhy HH, Hare J, Sih HJ, 2007. Autonomic ganglionated plexi: characterization and effect of epicardial microwave ablation in a canine model of vagally induced acute atrial fibrillation. Innovations (Phila), 2(1):7-13. https://doi.org/10.1097/IMI.0b013e31802c5b13https://doi.org/10.1097/IMI.0b013e31802c5b13
Beyer C, Tokarska L, Stühlinger M, et al., 2021. Structural cardiac remodeling in atrial fibrillation. JACC Cardiovasc Imaging, 14(11):2199-2208. https://doi.org/10.1016/j.jcmg.2021.04.027https://doi.org/10.1016/j.jcmg.2021.04.027
Bhimani AA, Yasuda T, Sadrpour SA, et al., 2014. Ranolazine terminates atrial flutter and fibrillation in a canine model. Heart Rhythm, 11(9):1592-1599. https://doi.org/10.1016/j.hrthm.2014.05.038https://doi.org/10.1016/j.hrthm.2014.05.038
Bingen BO, Engels MC, Schalij MJ, et al., 2014. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res, 104(1):194-205. https://doi.org/10.1093/cvr/cvu179https://doi.org/10.1093/cvr/cvu179
Blana A, Kaese S, Fortmüller L, et al., 2010. Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability. Heart Rhythm, 7(12):1862-1869. https://doi.org/10.1016/j.hrthm.2010.08.016https://doi.org/10.1016/j.hrthm.2010.08.016
Buhl R, Nissen SD, Winther MLK, et al., 2021. Implantable loop recorders can detect paroxysmal atrial fibrillation in standardbred racehorses with intermittent poor performance. Equine Vet J, 53(5):955-963. https://doi.org/10.1111/evj.13372https://doi.org/10.1111/evj.13372
Byrne JE, Gomoll AW, McKinney GR, 1977. Antiarrhythmic properties of MJ 9067 in acute animal models. J Pharmacol Exp Ther, 200(1):147-154.
Calvert P, Farinha JM, Gupta D, et al., 2022. A comparison of medical therapy and ablation for atrial fibrillation in patients with heart failure. Expert Rev Cardiovasc Ther, 20(3):169-183. https://doi.org/10.1080/14779072.2022.2050695https://doi.org/10.1080/14779072.2022.2050695
Calvo D, Filgueiras-Rama D, Jalife J, 2018. Mechanisms and drug development in atrial fibrillation. Pharmacol Rev, 70(3):505-525. https://doi.org/10.1124/pr.117.014183https://doi.org/10.1124/pr.117.014183
Carbone AM, del Calvo G, Nagliya D, et al., 2022. Autonomic nervous system regulation of epicardial adipose tissue: potential roles for regulator of G protein signaling-4. Curr Issues Mol Biol, 44(12):6093-6103. https://doi.org/10.3390/cimb44120415https://doi.org/10.3390/cimb44120415
Carstensen H, Kjær L, Haugaard MM, et al., 2018. Antiarrhythmic effects of combining dofetilide and ranolazine in a model of acutely induced atrial fibrillation in horses. J Cardiovasc Pharmacol, 71(1):26-35. https://doi.org/10.1097/FJC.0000000000000541https://doi.org/10.1097/FJC.0000000000000541
Carstensen H, Hesselkilde EZ, Haugaard MM, et al., 2019. Effects of dofetilide and ranolazine on atrial fibrillatory rate in a horse model of acutely induced atrial fibrillation. J Cardiovasc Electrophysiol, 30(4):596-606. https://doi.org/10.1111/jce.13849https://doi.org/10.1111/jce.13849
Cha TJ, Ehrlich JR, Zhang LM, et al., 2004. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation, 110(12):1520-1526. https://doi.org/10.1161/01.CIR.0000142052.03565.87https://doi.org/10.1161/01.CIR.0000142052.03565.87
Cha TJ, Ehrlich JR, Zhang LM, et al., 2005. Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation, 111(6):728-735. https://doi.org/10.1161/01.CIR.0000155240.05251.D0https://doi.org/10.1161/01.CIR.0000155240.05251.D0
Chen XJ, Xu J, Jiang BZ, et al., 2016. Bone morphogenetic protein-7 antagonizes myocardial fibrosis induced by atrial fibrillation by restraining transforming growth factor-β (TGF-β)/Smads signaling. Med Sci Monit, 22:3457-3468. https://doi.org/10.12659/msm.897560https://doi.org/10.12659/msm.897560
Chen YJ, Chen SA, Chen YC, et al., 2001. Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation, 104(23):2849-2854. https://doi.org/10.1161/hc4801.099736https://doi.org/10.1161/hc4801.099736
Chew DS, Li YH, Cowper PA, et al., 2022. Cost-effectiveness of catheter ablation versus antiarrhythmic drug therapy in atrial fibrillation: the CABANA randomized clinical trial. Circulation, 146(7):535-547. https://doi.org/10.1161/CIRCULATIONAHA.122.058575https://doi.org/10.1161/CIRCULATIONAHA.122.058575
Chiou CW, Eble JN, Zipes DP, 1997. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation, 95(11):2573-2584. https://doi.org/10.1161/01.cir.95.11.2573https://doi.org/10.1161/01.cir.95.11.2573
Clauss S, Bleyer C, Schüttler D, et al., 2019. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol, 16(8):457-475. https://doi.org/10.1038/s41569-019-0179-0https://doi.org/10.1038/s41569-019-0179-0
Curran J, Hinton MJ, Ríos E, et al., 2007. β-Adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res, 100(3):391-398. https://doi.org/10.1161/01.RES.0000258172.74570.e6https://doi.org/10.1161/01.RES.0000258172.74570.e6
Danson EJF, Zhang YH, Sears CE, et al., 2005. Disruption of inhibitory G-proteins mediates a reduction in atrial β-adrenergic signaling by enhancing eNOS expression. Cardiovasc Res, 67(4):613-623. https://doi.org/10.1016/j.cardiores.2005.04.034https://doi.org/10.1016/j.cardiores.2005.04.034
de Clercq D, van Loon G, Tavernier R, et al., 2008. Atrial and ventricular electrical and contractile remodeling and reverse remodeling owing to short-term pacing-induced atrial fibrillation in horses. J Vet Intern Med, 22(6):1353-1359. https://doi.org/10.1111/j.1939-1676.2008.0202.xhttps://doi.org/10.1111/j.1939-1676.2008.0202.x
Deroubaix E, Folliguet T, Rücker-Martin C, et al., 2004. Moderate and chronic hemodynamic overload of sheep atria induces reversible cellular electrophysiologic abnormalities and atrial vulnerability. J Am Coll Cardiol, 44(9):1918-1926. https://doi.org/10.1016/j.jacc.2004.07.055https://doi.org/10.1016/j.jacc.2004.07.055
Diness JG, Kirchhoff JE, Sheykhzade M, et al., 2015. Antiarrhythmic effect of either negative modulation or blockade of small conductance Ca2+-activated K+ channels on ventricular fibrillation in guinea pig langendorff-perfused heart. J Cardiovasc Pharmacol, 66(3):294-299. https://doi.org/10.1097/FJC.0000000000000278https://doi.org/10.1097/FJC.0000000000000278
Diness JG, Skibsbye L, Simó-Vicens R, et al., 2017. Termination of vernakalant-resistant atrial fibrillation by inhibition of small-conductance Ca2+-activated K+ channels in pigs. Circ Arrhythm Electrophysiol, 10(10):e005125. https://doi.org/10.1161/CIRCEP.117.005125https://doi.org/10.1161/CIRCEP.117.005125
Diness JG, Kirchhoff JE, Speerschneider T, et al., 2020. The KCa2 channel inhibitor AP30663 selectively increases atrial refractoriness, converts vernakalant-resistant atrial fibrillation and prevents its reinduction in conscious pigs. Front Pharmacol, 11:159. https://doi.org/10.3389/fphar.2020.00159https://doi.org/10.3389/fphar.2020.00159
Dobrev D, Wehrens XHT, 2018. Mouse models of cardiac arrhythmias. Circ Res, 123(3):332-334. https://doi.org/10.1161/CIRCRESAHA.118.313406https://doi.org/10.1161/CIRCRESAHA.118.313406
dos Santos L, Antonio EL, Serra AJ, et al., 2018. Atrial fibrillation promotion in a rat model of heart failure induced by left ventricle radiofrequency ablation. IJC Heart Vasc, 21:22-28. https://doi.org/10.1016/j.ijcha.2018.09.003https://doi.org/10.1016/j.ijcha.2018.09.003
Ehrlich JR, Cha TJ, Zhang L, et al., 2003. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol, 551(Pt 3):801-813. https://doi.org/10.1113/jphysiol.2003.046417https://doi.org/10.1113/jphysiol.2003.046417
Erhard N, Metzner A, Fink T, 2022. Late arrhythmia recurrence after atrial fibrillation ablation: incidence, mechanisms and clinical implications. Herzschrittmacherther Elektrophysiol, 33(1):71-76. https://doi.org/10.1007/s00399-021-00836-6https://doi.org/10.1007/s00399-021-00836-6
Fan YY, Xu F, Zhu C, et al., 2019. Effects of febuxostat on atrial remodeling in a rabbit model of atrial fibrillation induced by rapid atrial pacing. J Geriatr Cardiol, 16(7):540-551. https://doi.org/10.11909/j.issn.1671-5411.2019.07.003https://doi.org/10.11909/j.issn.1671-5411.2019.07.003
Feng RH, Wan JJ, He YS, et al., 2023. Angiotensin-receptor blocker losartan alleviates atrial fibrillation in rats by downregulating frizzled 8 and inhibiting the activation of WNT-5A pathway. Clin Exp Pharmacol Physiol, 50(1):19-27. https://doi.org/10.1111/1440-1681.13715https://doi.org/10.1111/1440-1681.13715
Field LJ, 1988. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science, 239(4843):1029-1033. https://doi.org/10.1126/science.2964082https://doi.org/10.1126/science.2964082
Frydrychowski P, Michałek M, Sławuta A, et al., 2020. Large animals as models of atrial fibrillation. Adv Clin Exp Med, 29(6):757-767. https://doi.org/10.17219/acem/122130https://doi.org/10.17219/acem/122130
Garcia JR, Campbell PF, Kumar G, et al., 2018. Minimally invasive delivery of hydrogel-encapsulated amiodarone to the epicardium reduces atrial fibrillation. Circ Arrhythm Electrophysiol, 11(5):e006408. https://doi.org/10.1161/CIRCEP.118.006408https://doi.org/10.1161/CIRCEP.118.006408
Gendenshteĭn EI, Kostin IV, 1976. Antiarrhythmic activity of trimecaine in experimental arrhythmia and its effect on the heart conduction system. Farmakol Toksikol, 39(4):426-428.
Gendenshteĭn EI, Kostin IV, Simon IB, 1976. Anti-arrhythmic activity of the beta2-adrenoblockader alpheprol. Biull Eksp Biol Med, 81(6):694-696 (in Russian).
Gendenshteĭn EI, Kostin IV, Volkova ND, 1977. Antiarrhythmic activity of adrenergic blockaders with different mechanisms of action. Kardiologiia, 17(4):116-120.
Gerstenfeld EP, Lavi N, Bazan V, et al., 2011. Mechanism of complex fractionated electrograms recorded during atrial fibrillation in a canine model. Pacing Clin Electrophysiol, 34(7):844-857. https://doi.org/10.1111/j.1540-8159.2011.03071.xhttps://doi.org/10.1111/j.1540-8159.2011.03071.x
Ghias M, Scherlag BJ, Lu ZB, et al., 2009. The role of ganglionated plexi in apnea-related atrial fibrillation. J Am Coll Cardiol, 54(22):2075-2083. https://doi.org/10.1016/j.jacc.2009.09.014https://doi.org/10.1016/j.jacc.2009.09.014
Godoy-Marín H, Jiménez-Sábado V, Tarifa C, et al., 2023. Increased density of endogenous adenosine A2A receptors in atrial fibrillation: from cellular and porcine models to human patients. Int J Mol Sci, 24(4):3668. https://doi.org/10.3390/ijms24043668https://doi.org/10.3390/ijms24043668
Goldberger AL, Pavelec RS, 1986. Vagally-mediated atrial fibrillation in dogs: conversion with bretylium tosylate. Int J Cardiol, 13(1):47-55. https://doi.org/10.1016/0167-5273(86)90078-1https://doi.org/10.1016/0167-5273(86)90078-1
Gong C, Ding Y, Liang F, et al., 2022. Muscarinic receptor regulation of chronic pain-induced atrial fibrillation. Front Cardiovasc Med, 9:934906. https://doi.org/10.3389/fcvm.2022.934906https://doi.org/10.3389/fcvm.2022.934906
Guasch E, Benito B, Qi XY, et al., 2013. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J Am Coll Cardiol, 62(1):68-77. https://doi.org/10.1016/j.jacc.2013.01.091https://doi.org/10.1016/j.jacc.2013.01.091
Gussak G, Marszalec W, Yoo S, et al., 2020. Triggered Ca2+ waves induce depolarization of maximum diastolic potential and action potential prolongation in dog atrial myocytes. Circ Arrhythm Electrophysiol, 13(6):e008179. https://doi.org/10.1161/CIRCEP.119.008179https://doi.org/10.1161/CIRCEP.119.008179
Guzadhur L, Pearcey SM, Duehmke RM, et al., 2010. Atrial arrhythmogenicity in aged Scn5a+/∆KPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction. Pflugers Arch-Eur J Physiol, 460(3):593-601. https://doi.org/10.1007/s00424-010-0851-zhttps://doi.org/10.1007/s00424-010-0851-z
Han JP, Zhang YZ, Wang XF, et al., 2023. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater Sci, 11(2):655-665. https://doi.org/10.1039/d2bm01733dhttps://doi.org/10.1039/d2bm01733d
Hanna P, Buch E, Stavrakis S, et al., 2021. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res, 117(7):1732-1745. https://doi.org/10.1093/cvr/cvab172https://doi.org/10.1093/cvr/cvab172
Hellgren I, Mustafa A, Riazi M, et al., 2000. Muscarinic M3 receptor subtype gene expression in the human heart. Cell Mol Life Sci CMLS, 57(1):175-180. https://doi.org/10.1007/s000180050507https://doi.org/10.1007/s000180050507
Hesselkilde EZ, Carstensen H, Flethøj M, et al., 2019. Longitudinal study of electrical, functional and structural remodelling in an equine model of atrial fibrillation. BMC Cardiovasc Disord, 19:228. https://doi.org/10.1186/s12872-019-1210-4https://doi.org/10.1186/s12872-019-1210-4
Hiram R, Naud P, Xiong F, et al., 2019. Right atrial mechanisms of atrial fibrillation in a rat model of right heart disease. J Am Coll Cardiol, 74(10):1332-1347. https://doi.org/10.1016/j.jacc.2019.06.066https://doi.org/10.1016/j.jacc.2019.06.066
Hulsurkar MM, Lahiri SK, Moore O, et al., 2021. Atrial-specific LKB1 knockdown represents a novel mouse model of atrial cardiomyopathy with spontaneous atrial fibrillation. Circulation, 144(11):909-912. https://doi.org/10.1161/CIRCULATIONAHA.121.055373https://doi.org/10.1161/CIRCULATIONAHA.121.055373
Iwasaki YK, Shi YF, Benito B, et al., 2012. Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea. Heart Rhythm, 9(9):1409-1416.e1. https://doi.org/10.1016/j.hrthm.2012.03.024https://doi.org/10.1016/j.hrthm.2012.03.024
Jalife J, Berenfeld O, Skanes A, et al., 1998. Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both? J Cardiovasc Electrophysiol, 9(S8):S2-S12.
Jones DL, Tuomi JM, Chidiac P, 2012. Role of cholinergic innervation and RGS2 in atrial arrhythmia. Front Physiol, 3:239. https://doi.org/10.3389/fphys.2012.00239https://doi.org/10.3389/fphys.2012.00239
Jung SW, Newhard DK, Harrelson K, 2017. Transvenous electrical cardioversion of atrial fibrillation in two dogs. J Vet Cardiol, 19(2):175-181. https://doi.org/10.1016/j.jvc.2017.01.001https://doi.org/10.1016/j.jvc.2017.01.001
Justo F, Fuller H, Nearing BD, et al., 2016. Inhibition of the cardiac late sodium current with eleclazine protects against ischemia-induced vulnerability to atrial fibrillation and reduces atrial and ventricular repolarization abnormalities in the absence and presence of concurrent adrenergic stimulation. Heart Rhythm, 13(9):1860-1867. https://doi.org/10.1016/j.hrthm.2016.06.020https://doi.org/10.1016/j.hrthm.2016.06.020
Kato T, Iwasaki YK, Duker G, et al., 2014. Inefficacy of a highly selective T-type calcium channel blocker in preventing atrial fibrillation related remodeling. J Cardiovasc Electrophysiol, 25(5):531-536. https://doi.org/10.1111/jce.12346https://doi.org/10.1111/jce.12346
Keefe JA, Navarro-Garcia JA, Ni L, et al., 2022. In-depth characterization of a mouse model of postoperative atrial fibrillation. J Cardiovasc Aging, 2:40. https://doi.org/10.20517/jca.2022.21https://doi.org/10.20517/jca.2022.21
Kirchhoff JE, Diness JG, Sheykhzade M, et al., 2015. Synergistic antiarrhythmic effect of combining inhibition of Ca2+-activated K+ (SK) channels and voltage-gated Na+ channels in an isolated heart model of atrial fibrillation. Heart Rhythm, 12(2):409-418. https://doi.org/10.1016/j.hrthm.2014.12.010https://doi.org/10.1016/j.hrthm.2014.12.010
Kirchhoff JE, Diness JG, Abildgaard L, et al., 2016. Antiarrhythmic effect of the Ca2+-activated K+ (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Pflugers Arch-Eur J Physiol, 468(11-12):1853-1863. https://doi.org/10.1007/s00424-016-1883-9https://doi.org/10.1007/s00424-016-1883-9
Kirchhoff S, Nelles E, Hagendorff A, et al., 1998. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol, 8(5):299-302. https://doi.org/10.1016/s0960-9822(98)70114-9https://doi.org/10.1016/s0960-9822(98)70114-9
Kistler PM, Sanders P, Dodic M, et al., 2006. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J, 27(24):3045-3056. https://doi.org/10.1093/eurheartj/ehl360https://doi.org/10.1093/eurheartj/ehl360
Kjeldsen ST, Nissen SD, Buhl R, et al., 2022. Paroxysmal atrial fibrillation in horses: pathophysiology, diagnostics and clinical aspects. Animals (Basel), 12(6):698. https://doi.org/10.3390/ani12060698https://doi.org/10.3390/ani12060698
Kochiadakis GE, Igoumenidis NE, Hamilos ME, et al., 2007. A comparative study of the efficacy and safety of procainamide versus propafenone versus amiodarone for the conversion of recent-onset atrial fibrillation. Am J Cardiol, 99(12):1721-1725. https://doi.org/10.1016/j.amjcard.2007.01.059https://doi.org/10.1016/j.amjcard.2007.01.059
Lee AM, Miller JR, Voeller RK, et al., 2016. A simple porcine model of inducible sustained atrial fibrillation. Innovations (Phila), 11(1):76-78. https://doi.org/10.1097/IMI.0000000000000230https://doi.org/10.1097/IMI.0000000000000230
Lee S, Vitebskiy S, Goldstein RN, et al., 2022. Reliable pace termination of postoperative atrial fibrillation in the canine sterile pericarditis model: implications for atypical atrial flutter. Heart Rhythm O2, 3(1):91-96. https://doi.org/10.1016/j.hroo.2022.01.003https://doi.org/10.1016/j.hroo.2022.01.003
Lemola K, Chartier D, Yeh YH, et al., 2008. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia. Circulation, 117(4):470-477. https://doi.org/10.1161/CIRCULATIONAHA.107.737023https://doi.org/10.1161/CIRCULATIONAHA.107.737023
Lenaerts I, Holemans P, Pokreisz P, et al., 2011. Nitric oxide delays atrial tachycardia-induced electrical remodelling in a sheep model. EP Europace, 13(5):747-754. https://doi.org/10.1093/europace/eur021https://doi.org/10.1093/europace/eur021
Lequerica JL, Sanz E, Hornero F, et al., 2009. Esophagus histological analysis after hyperthermia-induced injury: implications for cardiac ablation. Int J Hyperthermia, 25(2):150-159. https://doi.org/10.1080/02656730802537626https://doi.org/10.1080/02656730802537626
Lewis T, 1911. The electrocardiographic method and its relationship to clinical medicine. Proc Roy Soc Med, 4:81-100. https://doi.org/10.1177/003591571100400606https://doi.org/10.1177/003591571100400606
Li N, Timofeyev V, Tuteja D, et al., 2009. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol, 587(5):1087-1100. https://doi.org/10.1113/jphysiol.2008.167718https://doi.org/10.1113/jphysiol.2008.167718
Li N, Wang TN, Wang W, et al., 2012. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res, 110(3):465-470. https://doi.org/10.1161/CIRCRESAHA.111.253229https://doi.org/10.1161/CIRCRESAHA.111.253229
Li N, Chiang DY, Wang SF, et al., 2014. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation, 129(12):1276-1285. https://doi.org/10.1161/CIRCULATIONAHA.113.006611https://doi.org/10.1161/CIRCULATIONAHA.113.006611
Liao J, Zhang SS, Yang ST, et al., 2021. Interleukin-6-mediated-Ca2+ handling abnormalities contributes to atrial fibrillation in sterile pericarditis rats. Front Immunol, 12:758157. https://doi.org/10.3389/fimmu.2021.758157https://doi.org/10.3389/fimmu.2021.758157
Lin JL, Lai LP, Lin CS, et al., 2003. Electrophysiological mapping and histological examinations of the swine atrium with sustained (≥24 h) atrial fibrillation: a suitable animal model for studying human atrial fibrillation. Cardiology, 99(2):78-84. https://doi.org/10.1159/000069728https://doi.org/10.1159/000069728
Linz D, Ukena C, Mahfoud F, et al., 2014. Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? J Am Coll Cardiol, 63(3):215-224. https://doi.org/10.1016/j.jacc.2013.09.020https://doi.org/10.1016/j.jacc.2013.09.020
Linz D, Hesselkilde E, Kutieleh R, et al., 2020. Pulmonary vein firing initiating atrial fibrillation in the horse: oversized dimensions but similar mechanisms. J Cardiovasc Electrophysiol, 31(5):1211-1212. https://doi.org/10.1111/jce.14422https://doi.org/10.1111/jce.14422
Liu F, Sun W, Li Y, et al., 2021. Low-level stimulation and ethanol ablation of the vein of marshall prevent the vagal-mediated AF. Front Cardiovasc Med, 8:675485. https://doi.org/10.3389/fcvm.2021.675485https://doi.org/10.3389/fcvm.2021.675485
Liu L, Nattel S, 1997. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol-Heart Circ Physiol, 273(2):H805-H816. https://doi.org/10.1152/ajpheart.1997.273.2.H805https://doi.org/10.1152/ajpheart.1997.273.2.H805
Lu ZB, Nie L, He B, et al., 2013. Increase in vulnerability of atrial fibrillation in an acute intermittent hypoxia model: importance of autonomic imbalance. Auton Neurosci, 177(2):148-153. https://doi.org/10.1016/j.autneu.2013.03.014https://doi.org/10.1016/j.autneu.2013.03.014
Lugenbiel P, Wenz F, Govorov K, et al., 2015. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLoS ONE, 10(3):e0116395. https://doi.org/10.1371/journal.pone.0116395https://doi.org/10.1371/journal.pone.0116395
Lymperopoulos A, Cora N, Maning J, et al., 2021. Signaling and function of cardiac autonomic nervous system receptors: insights from the gpcr signalling universe. FEBS J, 288(8):2645-2659. https://doi.org/10.1111/febs.15771https://doi.org/10.1111/febs.15771
Ma SZ, Yan F, Hou YL, 2023. Intermedin 1-53 ameliorates atrial fibrosis and reduces inducibility of atrial fibrillation via TGF-β1/pSmad3 and Nox4 pathway in a rat model of heart failure. J Clin Med, 12(4):1537. https://doi.org/10.3390/jcm12041537https://doi.org/10.3390/jcm12041537
Manati W, Pineau J, Puertas RD, et al., 2018. Vagal stimulation after acute coronary occlusion: the heart rate matters. Cardiol J, 25(6):709-713. https://doi.org/10.5603/CJ.a2017.0156https://doi.org/10.5603/CJ.a2017.0156
Manninger M, Zweiker D, van Hunnik A, et al., 2018. Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm, 15(9):1328-1336. https://doi.org/10.1016/j.hrthm.2018.05.016https://doi.org/10.1016/j.hrthm.2018.05.016
Martins RP, Kaur K, Hwang E, et al., 2014. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation, 129(14):1472-1482. https://doi.org/10.1161/CIRCULATIONAHA.113.004742https://doi.org/10.1161/CIRCULATIONAHA.113.004742
McCauley MD, Hong L, Sridhar A, et al., 2020. Ion channel and structural remodeling in obesity-mediated atrial fibrillation. Circ Arrhythm Electrophysiol, 13(8):e008296. https://doi.org/10.1161/CIRCEP.120.008296https://doi.org/10.1161/CIRCEP.120.008296
Miyauchi Y, Zhou SM, Okuyama Y, et al., 2003. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation, 108(3):360-366. https://doi.org/10.1161/01.CIR.0000080327.32573.7Chttps://doi.org/10.1161/01.CIR.0000080327.32573.7C
Monigatti-Tenkorang J, Jousset F, Pascale P, et al., 2014. Intermittent atrial tachycardia promotes repolarization alternans and conduction slowing during rapid rates, and increases susceptibility to atrial fibrillation in a free-behaving sheep model. J Cardiovasc Electrophysiol, 25(4):418-427. https://doi.org/10.1111/jce.12353https://doi.org/10.1111/jce.12353
Namekata I, Hiiro H, Odaka R, et al., 2022. Inhibitory effect of a late sodium current blocker, NCC-3902, on the automaticity of the guinea pig pulmonary vein myocardium. Biol Pharm Bull, 45(11):1644-1652. https://doi.org/10.1248/bpb.b22-00362https://doi.org/10.1248/bpb.b22-00362
Nattel S, Dobrev D, 2016. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat Rev Cardiol, 13(10):575-590. https://doi.org/10.1038/nrcardio.2016.118https://doi.org/10.1038/nrcardio.2016.118
Nofi C, Zhang K, Tang YD, et al., 2020. Chronic dantrolene treatment attenuates cardiac dysfunction and reduces atrial fibrillation inducibility in a rat myocardial infarction heart failure model. Heart Rhythm O2, 1(2):126-135. https://doi.org/10.1016/j.hroo.2020.03.004https://doi.org/10.1016/j.hroo.2020.03.004
Nogami S, Satoh S, Nakano M, et al., 2003. Taxilin; a novel syntaxin-binding protein that is involved in Ca2+-dependent exocytosis in neuroendocrine cells. Genes Cells, 8(1):17-28. https://doi.org/10.1046/j.1365-2443.2003.00612.xhttps://doi.org/10.1046/j.1365-2443.2003.00612.x
Oh S, Zhang YH, Bibevski S, et al., 2006. Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm, 3(6):701-708. https://doi.org/10.1016/j.hrthm.2006.02.020https://doi.org/10.1016/j.hrthm.2006.02.020
Ohara K, Miyauchi Y, Ohara T, et al., 2002. Downregulation of immunodetectable atrial Connexin4O in a canine model of chronic left ventricular myocardial infarction: implications to atrial fibrillation. J Cardiovasc Pharmacol Ther, 7(2):89-94. https://doi.org/10.1177/107424840200700205https://doi.org/10.1177/107424840200700205
Ortiz J, Niwano S, Abe H, et al., 1994. Mapping the conversion of atrial flutter to atrial fibrillation and atrial fibrillation to atrial flutter. Insights into mechanisms. Circ Res, 74(5):882-894. https://doi.org/10.1161/01.res.74.5.882https://doi.org/10.1161/01.res.74.5.882
Oyama MA, Prosek R, 2006. Acute conversion of atrial fibrillation in two dogs by intravenous amiodarone administration. J Vet Intern Med, 20(5):1224-1227. https://doi.org/10.1111/j.1939-1676.2006.tb00727.xhttps://doi.org/10.1111/j.1939-1676.2006.tb00727.x
Packer DL, Piccini JP, Monahan KH, et al., 2021. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation, 143(14):1377-1390. https://doi.org/10.1161/CIRCULATIONAHA.120.050991https://doi.org/10.1161/CIRCULATIONAHA.120.050991
Patterson E, Lazzara R, Szabo B, et al., 2006. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol, 47(6):1196-1206. https://doi.org/10.1016/j.jacc.2005.12.023https://doi.org/10.1016/j.jacc.2005.12.023
Pedro B, Fontes-Sousa AP, Gelzer AR, 2020. Diagnosis and management of canine atrial fibrillation. Vet J, 265:105549. https://doi.org/10.1016/j.tvjl.2020.105549https://doi.org/10.1016/j.tvjl.2020.105549
Pereira PJS, Pugsley MK, Troncy E, et al., 2019. Incidence of spontaneous arrhythmias in freely moving healthy untreated Sprague-Dawley rats. J Pharmacol Toxicol Methods, 99:106589. https://doi.org/10.1016/j.vascn.2019.106589https://doi.org/10.1016/j.vascn.2019.106589
Pinho-Gomes AC, Amorim MJ, Oliveira SM, et al., 2014. Surgical treatment of atrial fibrillation: an updated review. Eur J Cardiothorac Surg, 46(2):167-178. https://doi.org/10.1093/ejcts/ezt584https://doi.org/10.1093/ejcts/ezt584
Po SS, Li YH, Tang D, et al., 2005. Rapid and stable re-entry within the pulmonary vein as a mechanism initiating paroxysmal atrial fibrillation. J Am Coll Cardiol, 45(11):1871-1877. https://doi.org/10.1016/j.jacc.2005.02.070https://doi.org/10.1016/j.jacc.2005.02.070
Po SS, Scherlag BJ, Yamanashi WS, et al., 2006. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm, 3(2):201-208. https://doi.org/10.1016/j.hrthm.2005.11.008https://doi.org/10.1016/j.hrthm.2005.11.008
Polejaeva IA, Ranjan R, Davies CJ, et al., 2016. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor-β1. J Cardiovasc Electrophysiol, 27(10):1220-1229. https://doi.org/10.1111/jce.13049https://doi.org/10.1111/jce.13049
Pruvot E, Jousset F, Ruchat P, et al., 2007. Propagation velocity kinetics and repolarization alternans in a free-behaving sheep model of pacing-induced atrial fibrillation. EP Europace, 9(S6):vi83-vi88. https://doi.org/10.1093/europace/eum211https://doi.org/10.1093/europace/eum211
Quintanilla JG, Alfonso-Almazán JM, Pérez-Castellano N, et al., 2019. Instantaneous amplitude and frequency modulations detect the footprint of rotational activity and reveal stable driver regions as targets for persistent atrial fibrillation ablation. Circ Res, 125(6):609-627. https://doi.org/10.1161/CIRCRESAHA.119.314930https://doi.org/10.1161/CIRCRESAHA.119.314930
Ramírez J, Tinker A, 2021. Ventricular restitution predicts paroxysmal atrial fibrillation in horses. Function, 2(1):zqaa038. https://doi.org/10.1093/function/zqaa038https://doi.org/10.1093/function/zqaa038
Remes J, van Brakel TJ, Bolotin G, et al., 2008. Persistent atrial fibrillation in a goat model of chronic left atrial overload. J Thorac Cardiovasc Surg, 136(4):1005-1011. https://doi.org/10.1016/j.jtcvs.2008.05.015https://doi.org/10.1016/j.jtcvs.2008.05.015
Rivard L, Sinno H, Shiroshita-Takeshita A, et al., 2007. The pharmacological response of ischemia-related atrial fibrillation in dogs: evidence for substrate-specific efficacy. Cardiovasc Res, 74(1):104-113. https://doi.org/10.1016/j.cardiores.2007.01.018https://doi.org/10.1016/j.cardiores.2007.01.018
Roselli C, Rienstra M, Ellinor PT, 2020. Genetics of atrial fibrillation in 2020: GWAS, genome sequencing, polygenic risk, and beyond. Circ Res, 127(1):21-33. https://doi.org/10.1161/CIRCRESAHA.120.316575https://doi.org/10.1161/CIRCRESAHA.120.316575
Sagris M, Vardas EP, Theofilis P, et al., 2022. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int J Mol Sci, 23(1):6. https://doi.org/10.3390/ijms23010006https://doi.org/10.3390/ijms23010006
Saljic A, Jespersen T, Buhl R, 2022. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol, 179(5):838-858. https://doi.org/10.1111/bph.15417https://doi.org/10.1111/bph.15417
Santa Cruz A, Meşe G, Valiuniene L, et al., 2015. Altered conductance and permeability of Cx40 mutations associated with atrial fibrillation. J Gen Physiol, 146(5):387-398. https://doi.org/10.1085/jgp.201511475https://doi.org/10.1085/jgp.201511475
Scherlag BJ, Nakagawa H, Jackman WM, et al., 2005. Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol, 13(Suppl 1):37-42. https://doi.org/10.1007/s10840-005-2492-2https://doi.org/10.1007/s10840-005-2492-2
Scherlag BJ, Hou YL, Lin JX, et al., 2008. An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. J Cardiovasc Electrophysiol, 19(5):519-527. https://doi.org/10.1111/j.1540-8167.2007.01087.xhttps://doi.org/10.1111/j.1540-8167.2007.01087.x
Schwartzman D, Badhwar V, Kormos RL, et al., 2016. A plasma-based, amiodarone-impregnated material decreases susceptibility to atrial fibrillation in a post-cardiac surgery model. Innovations (Phila), 11(1):59-63. https://doi.org/10.1097/IMI.0000000000000240https://doi.org/10.1097/IMI.0000000000000240
Schwarzl M, Alogna A, Zweiker D, et al., 2016. A porcine model of early atrial fibrillation using a custom-built, radio transmission-controlled pacemaker. J Electrocardiol, 49(2):124-131. https://doi.org/10.1016/j.jelectrocard.2015.12.012https://doi.org/10.1016/j.jelectrocard.2015.12.012
Shen MJ, Zipes DP, 2014. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res, 114(6):1004-1021. https://doi.org/10.1161/CIRCRESAHA.113.302549https://doi.org/10.1161/CIRCRESAHA.113.302549
Shen S, Duan JF, Hu JX, et al., 2022. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. Eur J Pharmacol, 929:175126. https://doi.org/10.1016/j.ejphar.2022.175126https://doi.org/10.1016/j.ejphar.2022.175126
Siasos G, Skotsimara G, Oikonomou E, et al., 2020. Antithrombotic treatment in diabetes mellitus: a review of the literature about antiplatelet and anticoagulation strategies used for diabetic patients in primary and secondary prevention. Curr Pharm Des, 26(23):2780-2788. https://doi.org/10.2174/1381612826666200417145605https://doi.org/10.2174/1381612826666200417145605
Sicouri S, Belardinelli L, Antzelevitch C, 2019. Effect of autonomic influences to induce triggered activity in muscular sleeves extending into the coronary sinus of the canine heart and its suppression by ranolazine. J Cardiovasc Electrophysiol, 30(2):230-238. https://doi.org/10.1111/jce.13770https://doi.org/10.1111/jce.13770
Sy MR, Keefe JA, Sutton JP, et al., 2023. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol, 324(1):H1-H13. https://doi.org/10.1152/ajpheart.00611.2022https://doi.org/10.1152/ajpheart.00611.2022
Takemoto Y, Ramirez RJ, Kaur K, et al., 2017. Eplerenone reduces atrial fibrillation burden without preventing atrial electrical remodeling. J Am Coll Cardiol, 70(23):2893-2905. https://doi.org/10.1016/j.jacc.2017.10.014https://doi.org/10.1016/j.jacc.2017.10.014
Temple J, Frias P, Rottman J, et al., 2005. Atrial fibrillation in KCNE1-null mice. Circ Res, 97(1):62-69. https://doi.org/10.1161/01.RES.0000173047.42236.88https://doi.org/10.1161/01.RES.0000173047.42236.88
Torii S, Yamamoto T, Nakamura N, et al., 2021. Antiplatelet effect of single antiplatelet therapy with prasugrel and oral anticoagulation after stent implantation in a rabbit arteriovenous shunt model. Circ Rep, 3(9):504-510. https://doi.org/10.1253/circrep.CR-21-0084https://doi.org/10.1253/circrep.CR-21-0084
Tubeeckx MRL, Laga S, Jacobs C, et al., 2021. Sterile pericarditis in Aachener minipigs as a model for atrial myopathy and atrial fibrillation. J Vis Exp, 175:e63094. https://doi.org/10.3791/63094https://doi.org/10.3791/63094
Wada T, Hagiwara-Nagasawa M, Kambayashi R, et al., 2021. Effects of cardiac massage and β-blocker pretreatment on the success rate of cardiopulmonary resuscitation assessed by the canine ischemia/reperfusion-induced ventricular fibrillation model. Circ J, 85(10):1885-1891. https://doi.org/10.1253/circj.CJ-20-0897https://doi.org/10.1253/circj.CJ-20-0897
Wang J, Liu L, Feng J, et al., 1996. Regional and functional factors determining induction and maintenance of atrial fibrillation in dogs. Am J Physiol-Heart Circ Physiol, 271(1 Pt 2):H148-H158. https://doi.org/10.1152/ajpheart.1996.271.1.H148https://doi.org/10.1152/ajpheart.1996.271.1.H148
Wang XW, Shangguan WF, Li GP, 2018. Angiotensin-(1‒7) prevents atrial tachycardia induced-heat shock protein 27 expression. J Electrocardiol, 51(1):117-120. https://doi.org/10.1016/j.jelectrocard.2017.08.015https://doi.org/10.1016/j.jelectrocard.2017.08.015
Watanabe H, Yang T, Stroud DM, et al., 2011. Striking in vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro. Circulation, 124(9):1001-1011. https://doi.org/10.1161/CIRCULATIONAHA.110.987248https://doi.org/10.1161/CIRCULATIONAHA.110.987248
Wiedmann F, Beyersdorf C, Zhou XB, et al., 2020. Pharmacologic TWIK-related acid-sensitive K+ channel (TASK-1) potassium channel inhibitor A293 facilitates acute cardioversion of paroxysmal atrial fibrillation in a porcine large animal model. J Am Heart Assoc, 9(10):e015751. https://doi.org/10.1161/JAHA.119.015751https://doi.org/10.1161/JAHA.119.015751
Wijesurendra RS, Casadei B, 2019. Mechanisms of atrial fibrillation. Heart, 105(24):1860-1867. https://doi.org/10.1136/heartjnl-2018-314267https://doi.org/10.1136/heartjnl-2018-314267
Wijffels MCEF, Kirchhof CJHJ, Dorland R, et al., 1995. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation, 92(7):1954-1968. https://doi.org/10.1161/01.cir.92.7.1954https://doi.org/10.1161/01.cir.92.7.1954
Winslow E, 1981. Hemodynamic and arrhythmogenic effects of aconitine applied to the left atria of anesthetized cats. Effects of amiodarone and atropine. J Cardiovasc Pharmacol, 3(1):87-100. https://doi.org/10.1097/00005344-198101000-00008https://doi.org/10.1097/00005344-198101000-00008
Yao CX, Veleva T, Scott L, et al., 2018. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 138(20):2227-2242. https://doi.org/10.1161/CIRCULATIONAHA.118.035202https://doi.org/10.1161/CIRCULATIONAHA.118.035202
Yoo S, Rottmann M, Ng J, et al., 2023. Regions of highly recurrent electrogram morphology with low cycle length reflect substrate for atrial fibrillation. JACC Basic Transl Sci, 8(1):68-84. https://doi.org/10.1016/j.jacbts.2022.07.011https://doi.org/10.1016/j.jacbts.2022.07.011
Zhang Y, Wang YT, Shan ZL, et al., 2015. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis. Mol Med Rep, 11(4):2615-2623. https://doi.org/10.3892/mmr.2014.3116https://doi.org/10.3892/mmr.2014.3116
Zhao H, Chen YM, Mao M, et al., 2022. A meta-analysis of colchicine in prevention of atrial fibrillation following cardiothoracic surgery or cardiac intervention. J Cardiothorac Surg, 17:224. https://doi.org/10.1186/s13019-022-01958-9https://doi.org/10.1186/s13019-022-01958-9
Zhao QY, Zhang SD, Huang H, et al., 2011. Inflammation abnormalities and inducibility of atrial fibrillation after epicardial ganglionated plexi ablation. Arch Cardiovasc Dis, 104(4):227-233. https://doi.org/10.1016/j.acvd.2011.01.007https://doi.org/10.1016/j.acvd.2011.01.007
Zhou LL, Liu Y, Wang ZJ, et al., 2021. Activation of NADPH oxidase mediates mitochondrial oxidative stress and atrial remodeling in diabetic rabbits. Life Sci, 272:119240. https://doi.org/10.1016/j.lfs.2021.119240https://doi.org/10.1016/j.lfs.2021.119240
Zhou SM, Chang CM, Wu TJ, et al., 2002. Nonreentrant focal activations in pulmonary veins in canine model of sustained atrial fibrillation. Am J Physiol Heart Circ Physiol, 283(3):H1244-H1252. https://doi.org/10.1152/ajpheart.01109.2001https://doi.org/10.1152/ajpheart.01109.2001
Zhou Z, Li SY, Sheng X, et al., 2020. Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: a potential treatment target for atrial fibrillation. Int J Cardiol, 302:59-66. https://doi.org/10.1016/j.ijcard.2019.12.031https://doi.org/10.1016/j.ijcard.2019.12.031
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution