无数据
Scan for full text
1.Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
2.Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
3.Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
4.Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200331, China
5.Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Shanghai 200120, China
6.Ji’an Hospital, Shanghai East Hospital, Ji’an 343000, China
Published: 15 July 2024 ,
Published Online: 10 July 2024 ,
Received: 17 March 2023 ,
Revised: 21 September 2023 ,
张昊,王新舒,胡铂等.人脐带间充质干细胞通过IGF1R-CHK2-p53信号轴减轻2型糖尿病雄性大鼠糖尿病肾病[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):568-580.
Hao ZHANG, Xinshu WANG, Bo HU, et al. Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(7):568-580(2024)
张昊,王新舒,胡铂等.人脐带间充质干细胞通过IGF1R-CHK2-p53信号轴减轻2型糖尿病雄性大鼠糖尿病肾病[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):568-580. DOI: 10.1631/jzus.B2300182.
Hao ZHANG, Xinshu WANG, Bo HU, et al. Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(7):568-580(2024) DOI: 10.1631/jzus.B2300182.
糖尿病是一种以慢性高血糖为特征的疾病综合征,长期的高糖环境会导致活性氧(ROS)的产生和核DNA损伤。人脐带来源的间充质干细胞(HUcMSC)输注2型糖尿病(T2DM)大鼠后可诱导显著的抗糖尿病作用。胰岛素样生长因子1受体(IGF1R)在促进糖尿病患者的葡萄糖代谢中起着重要作用;然而,HUcMSC通过IGF1R和DNA损伤修复治疗糖尿病的机制尚不清楚。本研究经高脂饮食喂养和链脲佐菌素(STZ)给药诱导建立糖尿病大鼠模型,并给大鼠输注四次HUcMSC,随后检测血糖、白细胞介素-6(IL-6)、IL-10、肾小球基底膜和肾功能。通过共免疫沉淀测定与IGF1R相互作用的蛋白质;使用免疫组织化学(IHC)和蛋白质印迹分析检测IGF1R、磷酸检查点激酶2(p-CHK2)和p-p53的表达;采用酶联免疫吸附试验(ELISA)测定血清8-羟基脱氧鸟苷(8-OHdG)的水平;使用流式细胞术检测HUcMSC的表面标志物;采用油红O染色和茜素红染色鉴定HUcMSC的形态和表型。结果显示:糖尿病大鼠肾小球基底膜、血糖、IL-6/10水平和肾功能异常;胰岛素样生长因子1(IGF1)和IGF1R表达增加;IGF1R与CHK2相互作用;p-CHK2在IGF1R敲低细胞中的表达显著降低。当使用顺铂诱导DNA损伤时,p-CHK2的表达高于未经顺铂诱导的IGF1R敲低组。HUcMSC的输注改善了糖尿病大鼠的血糖异常,并保护了其肾脏结构和功能。糖尿病组IGF1、IGF1R、p-CHK2和p-p53的表达以及8-OHdG的水平与对照组相比显著增加,且在HUcMSC治疗后降低。综上所述,IGF1R可以与CHK2相互作用并介导DNA损伤,且HUcMSC对糖尿病大鼠肾损伤有保护作用。HUcMSC通过介导IGF1R-CHK2-p53信号通路是治疗糖尿病的潜在机制。
Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however
the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study
a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose
interleukin-6 (IL-6)
IL-10
glomerular basement membrane
and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of
IGF1R
phosphorylated checkpoint kinase 2 (p-CHK2)
and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red “O” staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane
increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2
and the expression of p-CHK2 was significantly decreased in
IGF1R
-knockdown cells. When cisplatin was used to induce DNA damage
the expression of p-CHK2 was higher than that in the
IGF1R
-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1
IGF1R
p-CHK2
and p-p53
and the level of 8-OHdG in the DM group increased significantly compared with those in the control group
and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.
胰岛素样生长因子1受体(IGF1R)检查点激酶2(CHK2)p53糖尿病人脐带来源的间充质干细胞(HUcMSC)DNA损伤修复
Insulin-like growth factor 1 receptor (IGF1R)Checkpoint kinase 2 (CHK2)Protein 53 (p53)Diabetes mellitusHuman umbilical cord mesenchymal stem cell (HUcMSC)DNA damage repair
Adaikalakoteswari A, Rema M, Mohan V, et al., 2007. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with Type 2 diabetes and microangiopathy. Int J Biochem Cell Biol, 39(9):1673-1684. https://doi.org/10.1016/j.biocel.2007.04.013https://doi.org/10.1016/j.biocel.2007.04.013
Ansarullah, Jain C, Far FF, et al., 2021. Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, 590(7845):326-331. https://doi.org/10.1038/s41586-021-03225-8https://doi.org/10.1038/s41586-021-03225-8
Armata HL, Golebiowski D, Jung DY, et al., 2010. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol, 30(24):5787-5794. https://doi.org/10.1128/mcb.00347-10https://doi.org/10.1128/mcb.00347-10
Bernardo ME, Fibbe WE, 2013. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 13(4):392-402. https://doi.org/10.1016/j.stem.2013.09.006https://doi.org/10.1016/j.stem.2013.09.006
Bruner SD, Norman DP, Verdine GL, 2000. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403(6772):859-866. https://doi.org/10.1038/35002510https://doi.org/10.1038/35002510
Ceriello A, 2003. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care, 26(5):1589-1596. https://doi.org/10.2337/diacare.26.5.1589https://doi.org/10.2337/diacare.26.5.1589
Chitnis MM, Yuen JSP, Protheroe AS, et al., 2008. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res, 14(20):6364-6370. https://doi.org/10.1158/1078-0432.Ccr-07-4879https://doi.org/10.1158/1078-0432.Ccr-07-4879
Cho J, D'Antuono M, Glicksman M, et al., 2018. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells, 7(4):82-93.
Cingel-Ristic V, Schrijvers BF, van Vliet AK, et al., 2005. Kidney growth in normal and diabetic mice is not affected by human insulin-like growth factor binding protein-1 administration. Exp Biol Med, 230(2):135-143. https://doi.org/10.1177/153537020523000208https://doi.org/10.1177/153537020523000208
Collins AR, Rašlová K, Somorovská M, et al., 1998. DNA damage in diabetes: correlation with a clinical marker. Free Radic Biol Med, 25(3):373-377. https://doi.org/10.1016/s0891-5849(98)00053-7https://doi.org/10.1016/s0891-5849(98)00053-7
Ding DC, Chang YH, Shyu WC, et al., 2015. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant, 24(3):339-347. https://doi.org/10.3727/096368915x686841https://doi.org/10.3727/096368915x686841
Du XL, Matsumura T, Edelstein D, et al., 2003. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest, 112(7):1049-1057. https://doi.org/10.1172/jci18127https://doi.org/10.1172/jci18127
Flyvbjerg A, Bornfeldt KE, Marshall SM, et al., 1990. Kidney IGF-I mRNA in initial renal hypertrophy in experimental diabetes in rats. Diabetologia, 33(6):334-338. https://doi.org/10.1007/bf00404636https://doi.org/10.1007/bf00404636
Guariguata L, Whiting DR, Hambleton I, et al., 2014. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2):137-149. https://doi.org/10.1016/j.diabres.2013.11.002https://doi.org/10.1016/j.diabres.2013.11.002
Gurevich E, Segev Y, Landau D, 2021. Growth hormone and IGF1 actions in kidney development and function. Cells, 10(12):3371. https://doi.org/10.3390/cells10123371https://doi.org/10.3390/cells10123371
Hodgkinson AD, Bartlett T, Oates PJ, et al., 2003. The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy. Diabetes, 52(3):846-851. https://doi.org/10.2337/diabetes.52.3.846https://doi.org/10.2337/diabetes.52.3.846
Jia HY, Yan YM, Liang ZF, et al., 2018. Autophagy: a new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep, 17(3):3439-3447. https://doi.org/10.3892/mmr.2017.8311https://doi.org/10.3892/mmr.2017.8311
Kong YL, Shen Y, Ni J, et al., 2016. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway. Acta Pharmacol Sin, 37(2):217-227. https://doi.org/10.1038/aps.2015.128https://doi.org/10.1038/aps.2015.128
Lahiguera Á, Hyroššová P, Figueras A, et al., 2020. Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors. EMBO Mol Med, 12(6):e11217. https://doi.org/10.15252/emmm.201911217https://doi.org/10.15252/emmm.201911217
Landau D, Segev Y, Afargan M, et al., 2001. A novel somatostatin analogue prevents early renal complications in the nonobese diabetic mouse. Kidney Int, 60(2):505-512. https://doi.org/10.1046/j.1523-1755.2001.060002505.xhttps://doi.org/10.1046/j.1523-1755.2001.060002505.x
Landau D, Eshet R, Troib A, et al., 2009. Increased renal Akt/mTOR and MAPK signaling in type I diabetes in the absence of IGF type 1 receptor activation. Endocrine, 36(1):126-134. https://doi.org/10.1007/s12020-009-9190-2https://doi.org/10.1007/s12020-009-9190-2
Lee SH, 2018. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia, 4(4):150. https://doi.org/10.1016/j.afos.2018.11.083https://doi.org/10.1016/j.afos.2018.11.083
Leinonen J, Lehtimäki T, Toyokuni S, et al., 1997. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett, 417(1):150-152. https://doi.org/10.1016/s0014-5793(97)01273-8https://doi.org/10.1016/s0014-5793(97)01273-8
Li JY, Dong R, Yu JL, et al., 2018. Inhibitor of IGF1 receptor alleviates the inflammation process in the diabetic kidney mouse model without activating SOCS2. Drug Des Devel Ther, 12:2887-2896. https://doi.org/10.2147/dddt.S171638https://doi.org/10.2147/dddt.S171638
Loesch MM, Collier AE, Southern DH, et al., 2016. Insulin-like growth factor-1 receptor regulates repair of ultraviolet B-induced DNA damage in human keratinocytes in vivo. Mol Oncol, 10(8):1245-1254. https://doi.org/10.1016/j.molonc.2016.06.002https://doi.org/10.1016/j.molonc.2016.06.002
Macias MI, Grande J, Moreno A, et al., 2010. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol, 203(5):495.e9-495.e23. https://doi.org/10.1016/j.ajog.2010.06.045https://doi.org/10.1016/j.ajog.2010.06.045
Meyer S, Chibly AM, Burd R, et al., 2017. Insulin-like growth factor-1-mediated DNA repair in irradiated salivary glands is sirtuin-1 dependent. J Dent Res, 96(2):225-232. https://doi.org/10.1177/0022034516677529https://doi.org/10.1177/0022034516677529
Nie P, Bai X, Lou Y, et al., 2021. Human umbilical cord mesenchymal stem cells reduce oxidative damage and apoptosis in diabetic nephropathy by activating Nrf2. Stem Cell Res Ther, 12:450. https://doi.org/10.1186/s13287-021-02447-xhttps://doi.org/10.1186/s13287-021-02447-x
Nishikawa T, Edelstein D, Du XL, et al., 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779):787-790. https://doi.org/10.1038/35008121https://doi.org/10.1038/35008121
Paller MS, Neumann TV, 1991. Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation. Kidney Int, 40(6):1041-10499. https://doi.org/10.1038/ki.1991.312https://doi.org/10.1038/ki.1991.312
Papaharalambus CA, Griendling KK, 2007. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med, 17(2):48-54. https://doi.org/10.1016/j.tcm.2006.11.005https://doi.org/10.1016/j.tcm.2006.11.005
Pestieau SR, Quezado ZMN, Johnson YJ, et al., 2011. High-dose dexmedetomidine increases the opioid-free interval and decreases opioid requirement after tonsillectomy in children. Can J Anaesth, 58(6):540-550. https://doi.org/10.1007/s12630-011-9493-7https://doi.org/10.1007/s12630-011-9493-7
Qi YC, Ma J, Li SX, et al., 2019. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther, 10:274. https://doi.org/10.1186/s13287-019-1362-2https://doi.org/10.1186/s13287-019-1362-2
Raz I, Wexler I, Weiss O, et al., 2003. Role of insulin and the IGF system in renal hypertrophy in diabetic Psammomys obesus (sand rat). Nephrol Dial Transplant, 18(7):1293-1298. https://doi.org/10.1093/ndt/gfg170https://doi.org/10.1093/ndt/gfg170
Ríos-Silva M, Trujillo X, Trujillo-Hernández B, et al., 2014. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes. Int J Med Sci, 11(5):448-452. https://doi.org/10.7150/ijms.8034https://doi.org/10.7150/ijms.8034
Segev Y, Landau D, Marbach M, et al., 1997. Renal hypertrophy in hyperglycemic non-obese diabetic mice is associated with persistent renal accumulation of insulin-like growth factor I. J Am Soc Nephrol, 8(3):436-444. https://doi.org/10.1681/asn.V83436https://doi.org/10.1681/asn.V83436
Si YL, Zhao YL, Hao HJ, et al., 2012. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes, 61(6):1616-1625. https://doi.org/10.2337/db11-1141https://doi.org/10.2337/db11-1141
Sohn E, Kim J, Kim CS, et al., 2015. Extract of Rhizoma Polygonum cuspidatum reduces early renal podocyte injury in streptozotocin‑induced diabetic rats and its active compound emodin inhibits methylglyoxal‑mediated glycation of proteins. Mol Med Rep, 12(4):5837-5845. https://doi.org/10.3892/mmr.2015.4214https://doi.org/10.3892/mmr.2015.4214
Troib A, Landau D, Youngren JF, et al., 2011. The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease. Growth Horm IGF Res, 21(5):285-291. https://doi.org/10.1016/j.ghir.2011.07.007https://doi.org/10.1016/j.ghir.2011.07.007
Turney BW, Kerr M, Chitnis MM, et al., 2012. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks. Radiother Oncol, 103(3):402-409. https://doi.org/10.1016/j.radonc.2012.03.009https://doi.org/10.1016/j.radonc.2012.03.009
Vasylyeva TL, Ferry RJ, 2007. Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res Clin Pract, 76(2):177-186. https://doi.org/10.1016/j.diabres.2006.09.012https://doi.org/10.1016/j.diabres.2006.09.012
Wu HY, Zhang XC, Jia BB, et al., 2021. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway. J Pharmacol Sci, 147(1):143-155. https://doi.org/10.1016/j.jphs.2021.06.008https://doi.org/10.1016/j.jphs.2021.06.008
Xiang E, Han B, Zhang Q, et al., 2020. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther, 11:336. https://doi.org/10.1186/s13287-020-01852-yhttps://doi.org/10.1186/s13287-020-01852-y
Xie M, Hao HJ, Cheng Y, et al., 2017. Adipose-derived mesenchymal stem cells ameliorate hyperglycemia through regulating hepatic glucose metabolism in type 2 diabetic rats. Biochem Biophys Res Commun, 483(1):435-441. https://doi.org/10.1016/j.bbrc.2016.12.125https://doi.org/10.1016/j.bbrc.2016.12.125
Xie ZY, Hao HJ, Tong C, et al., 2016. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells, 34(3):627-639. https://doi.org/10.1002/stem.2238https://doi.org/10.1002/stem.2238
Xu YZ, Fan P, Liu L, et al., 2023. Novel perspective in transplantation therapy of mesenchymal stem cells: TArgeting the ferroptosis pathway. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(2):115-129. https://doi.org/10.1631/jzus.B2200410https://doi.org/10.1631/jzus.B2200410
Yang S, Chintapalli J, Sodagum L, et al., 2005. Activated IGF-1R inhibits hyperglycemia-induced DNA damage and promotes DNA repair by homologous recombination. Am J Physiol Renal Physiol, 289(5):F1144-F1152. https://doi.org/10.1152/ajprenal.00094.2005https://doi.org/10.1152/ajprenal.00094.2005
Yap SK, Tan KL, Abd Rahaman NY, et al., 2022. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in type 2 diabetes mellitus rats. Pharmaceutics, 14(3):649. https://doi.org/10.3390/pharmaceutics14030649https://doi.org/10.3390/pharmaceutics14030649
Zakaria EM, El-Maraghy NN, Ahmed AF, et al., 2017. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis. Naunyn-Schmiedeberg’s Arch Pharmacol, 390(6):621-631. https://doi.org/10.1007/s00210-017-1360-9https://doi.org/10.1007/s00210-017-1360-9
Zhang YQ, Le X, Zheng S, et al., 2022. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther, 13:171. https://doi.org/10.1186/s13287-022-02855-7https://doi.org/10.1186/s13287-022-02855-7
Zheng S, Zhang K, Zhang YQ, et al., 2023. Human umbilical cord mesenchymal stem cells inhibit pyroptosis of renal tubular epithelial cells through miR-342-3p/caspase1 signaling pathway in diabetic nephropathy. Stem Cells Int, 2023:5584894. https://doi.org/10.1155/2023/5584894https://doi.org/10.1155/2023/5584894
Zhou X, Patel D, Sen S, et al., 2017. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis. J Vasc Surg, 65(4):1161-1169. https://doi.org/10.1016/j.jvs.2016.03.407https://doi.org/10.1016/j.jvs.2016.03.407
0
Views
26
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution