无数据
Scan for full text
1.First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
2.Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
3.Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
4.Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou 450000, China
5.Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
Published: 15 June 2024 ,
Received: 15 March 2023 ,
Revised: 01 September 2023 ,
陈涛,李世朋,邓德文等.IRF-1在肝脏疾病调控中的关键作用:进展与展望[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):451-470.
Tao CHEN, Shipeng LI, Dewen DENG, et al. Key role of interferon regulatory factor 1 (IRF-1) in regulating liver disease: progress and outlook. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(6):451-470(2024)
陈涛,李世朋,邓德文等.IRF-1在肝脏疾病调控中的关键作用:进展与展望[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):451-470. DOI: 10.1631/jzus.B2300159.
Tao CHEN, Shipeng LI, Dewen DENG, et al. Key role of interferon regulatory factor 1 (IRF-1) in regulating liver disease: progress and outlook. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(6):451-470(2024) DOI: 10.1631/jzus.B2300159.
干扰素调节因子1(IRF-1)是干扰素调节因子家族的重要一员,其主要功能是能够与靶基因上的干扰素刺激反应元件(ISRE)结合,进而在干扰素诱导的信号通路中发挥重要作用。IRF-1作为一种重要的转录因子,在细胞周期调控、细胞死亡信号转导、增强免疫监视等方面具有重要作用。当前研究表明,IRF-1在多种肝脏疾病的发生和发展中发挥至关重要的作用,包括抑制肝炎病的复制、缓解肝纤维化的进展和加重肝缺血再灌注损伤(HIRI)等。IRF-1还作为一种重要的肿瘤抑制因子,在临床上可作为预测肝癌预后和复发的潜在指标。此外,最新的研究还揭示了IRF-1在介导其他肝脏疾病中的潜在作用,如预防酒精性/非酒精性脂肪性肝病,抑制胆管细胞癌的生物学进展,预防细胞排斥反应等。虽然当前的研究极少涉及IRF-1的临床转化领域,但几种化合物和药物似乎可以通过激活IRF-1信号通路,在动物体特定肝脏疾病模型中发挥保护功能。在本文中,我们将综述既往文献以帮助解读IRF-1在肝脏疾病治疗中的研究进展,并提供未来转化医学应用的理论基础。
Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1
as an important medium
has all of the advantages of full cell cycle regulation
cell death signaling transduction
and reinforcing immune surveillance
which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases
including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E)
alleviating the progression of liver fibrosis
and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients
which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally
the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD)
cholangiocarcinoma suppression
and uncommon traits in other liver diseases that had previously received little attention. Intriguingly
several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper
we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.
干扰素调节因子1(IRF-1)肝炎病毒肝纤维化肝缺血再灌注损伤(HIRI)肝癌
Interferon regulatory factor (IRF-1)Hepatitis virusLiver fibrosisHepatic ischemia-reperfusion injury (HIRI)Liver cancer
Alcantara FF, Tang H, McLachlan A, 2002. Functional characterization of the interferon regulatory element in the enhancer 1 region of the hepatitis B virus genome. Nucleic Acids Res, 30(9):2068-2075. https://doi.org/10.1093/nar/30.9.2068https://doi.org/10.1093/nar/30.9.2068
Alhetheel A, Albarrag A, Hakami A, et al., 2020. In the peripheral blood mononuclear cells (PBMCs) of HCV infected patients the expression of STAT1 and IRF-1 is downregulated while that of caspase-3 upregulated. Acta Virol, 64(3):352-358. https://doi.org/10.4149/av_2020_313https://doi.org/10.4149/av_2020_313
Armstrong MJ, Stang MT, Liu Y, et al., 2012. Interferon regulatory factor 1 (IRF-1) induces p21WAF1/CIP1 dependent cell cycle arrest and p21WAF1/CIP1 independent modulation of survivin in cancer cells. Cancer Lett, 319(1):56-65. https://doi.org/10.1016/j.canlet.2011.12.027https://doi.org/10.1016/j.canlet.2011.12.027
Assadiasl S, Shahi A, Salehi S, et al., 2018. Interferon regulatory factors: where to stand in transplantation. Transpl Immunol, 51:76-80. https://doi.org/10.1016/j.trim.2018.10.001https://doi.org/10.1016/j.trim.2018.10.001
Banerjee A, Mazumdar B, Meyer K, et al., 2011. Transcriptional repression of C4 complement by hepatitis C virus proteins. J Virol, 85(9):4157-4166. https://doi.org/10.1128/JVI.02449-10https://doi.org/10.1128/JVI.02449-10
Bender H, Wiesinger MY, Nordhoff C, et al., 2009. Interleukin-27 displays interferon-γ-like functions in human hepatoma cells and hepatocytes. Hepatology, 50(2):585-591. https://doi.org/10.1002/hep.22988https://doi.org/10.1002/hep.22988
Cai BS, Dongiovanni P, Corey KE, et al., 2020. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab, 31(2):406-421.e7. https://doi.org/10.1016/j.cmet.2019.11.013https://doi.org/10.1016/j.cmet.2019.11.013
Castellaneta A, Yoshida O, Kimura S, et al., 2014. Plasmacytoid dendritic cell-derived IFN-α promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology, 60(1):267-277. https://doi.org/10.1002/hep.27037https://doi.org/10.1002/hep.27037
Cavalli M, Pan G, Nord H, et al., 2017. Genetic prevention of hepatitis C virus-induced liver fibrosis by allele-specific downregulation of MERTK. Hepatol Res, 47(8):826-830. https://doi.org/10.1111/hepr.12810https://doi.org/10.1111/hepr.12810
Chen FF, Jiang G, Xu KR, et al., 2013. Function and mechanism by which interferon regulatory factor-1 inhibits oncogenesis. Oncol Lett, 5(2):417-423. https://doi.org/10.3892/ol.2012.1051https://doi.org/10.3892/ol.2012.1051
Chen XY, Cai Q, Liang RK, et al., 2023. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis, 14(2):105. https://doi.org/10.1038/s41419-023-05639-whttps://doi.org/10.1038/s41419-023-05639-w
Chen YF, Wang SH, Chang SJ, et al., 2014. Zhankuic acid A as a novel JAK2 inhibitor for the treatment of concanavalin A-induced hepatitis. Biochem Pharmacol, 91(2):217-230. https://doi.org/10.1016/j.bcp.2014.06.026https://doi.org/10.1016/j.bcp.2014.06.026
Chen YY, Sun R, Jiang W, et al., 2007. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell- and IFN-γ-dependent manner. J Hepatol, 47(2):183-190. https://doi.org/10.1016/j.jhep.2007.02.020https://doi.org/10.1016/j.jhep.2007.02.020
Cheng LP, Geng L, Dai BH, et al., 2018. Repression of let-7a cluster prevents adhesion of colorectal cancer cells by enforcing a mesenchymal phenotype in presence of liver inflammation. Cell Death Dis, 9(5):489. https://doi.org/10.1038/s41419-018-0477-1https://doi.org/10.1038/s41419-018-0477-1
Cho HI, Kim KM, Kwak JH, et al., 2013. Protective mech
anism of anethole on hepatic ischemia/reperfusion injury in mice. J Nat Prod, 76(9):1717-1723. https://doi.org/10.1021/np4004323https://doi.org/10.1021/np4004323
Colpitts CC, Ridewood S, Schneiderman B, et al., 2020. Hepatitis C virus exploits cyclophilin A to evade PKR. eLife, 9:e52237. https://doi.org/10.7554/eLife.52237https://doi.org/10.7554/eLife.52237
Cordoba SP, Wang CM, Williams R, et al., 2006. Gene array analysis of a rat model of liver transplant tolerance identifies increased complement C3 and the STAT-1/IRF-1 pathway during tolerance induction. Liver Transpl, 12(4):636-643. https://doi.org/10.1002/lt.20637https://doi.org/10.1002/lt.20637
Cui X, Zhao HY, Wei S, et al., 2023. Hepatocellular carcinoma-derived FOXO1 inhibits tumor progression by suppressing IL-6 secretion from macrophages. Neoplasia, 40:100900. https://doi.org/10.1016/j.neo.2023.100900https://doi.org/10.1016/j.neo.2023.100900
Cui ZL, Li SP, Liu ZR, et al., 2018. Interferon regulatory factor 1 activates autophagy to aggravate hepatic ischemia-reperfusion injury by increasing high mobility group box 1 release. Cell Physiol Biochem, 48(1):328-338. https://doi.org/10.1159/000491732https://doi.org/10.1159/000491732
Devarbhavi H, Asrani SK, Arab JP, et al., 2023. Global burden of liver disease: 2023 update. J Hepatol, 79(2):516-537. https://doi.org/10.1016/j.jhep.2023.03.017https://doi.org/10.1016/j.jhep.2023.03.017
Dhupar R, Klune JR, Evankovich J, et al., 2011. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock, 35(3):293-301. https://doi.org/10.1097/SHK.0b013e3181f6aab0https://doi.org/10.1097/SHK.0b013e3181f6aab0
Dong K, Du Q, Cui X, et al., 2020. MicroRNA-301a (miR-301a) is induced in hepatocellular carcinoma (HCC) and down-regulates the expression of interferon regulatory factor-1. Biochem Biophys Res Commun, 524(2):273-279. https://doi.org/10.1016/j.bbrc.2020.01.034https://doi.org/10.1016/j.bbrc.2020.01.034
Du Q, Luo J, Yang MQ, et al., 2020. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med, 26:56. https://doi.org/10.1186/s10020-020-00182-2https://doi.org/10.1186/s10020-020-00182-2
Ebine K, Kumar K, Pham TN, et al., 2018. Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells. Sci Rep, 8:13225. https://doi.org/10.1038/s41598-018-31658-1https://doi.org/10.1038/s41598-018-31658-1
Eisenstein M, 2023. Seven technologies to watch in 2023. Nature, 613(7945):794-797. https://doi.org/10.1038/d41586-023-00178-yhttps://doi.org/10.1038/d41586-023-00178-y
Erickson L, Crews G, Pan F, et al., 2004. Unique gene expression profiles of heart allograft rejection in the interferon regulatory factor-1-deficient mouse. Transpl Immunol, 13(3):169-175. https://doi.org/10.1016/j.trim.2004.06.003https://doi.org/10.1016/j.trim.2004.06.003
Fujita T, Reis LF, Watanabe N, et al., 1989. Induction of the transcription factor IRF-1 and interferon-beta mRNAs by cytokines and activators of second-messenger pathways. Proc Natl Acad Sci USA, 86(24):9936-9940. https://doi.org/10.1073/pnas.86.24.9936https://doi.org/10.1073/pnas.86.24.9936
Gabrielli F, Alberti F, Russo C, et al., 2023. Treatment options for hepatitis A and E: a non-systematic review. Viruses, 15(5):1080. https://doi.org/10.3390/v15051080https://doi.org/10.3390/v15051080
Goonetilleke M, Kuk N, Correia J, et al., 2021. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther, 12:429. https://doi.org/10.1186/s13287-021-02476-6https://doi.org/10.1186/s13287-021-02476-6
Gu JJ, Deng CC, Feng QL, et al., 2023. Relief of extracellular matrix deposition repression by downregulation of IRF1-mediated TWEAK/Fn14 signaling in keloids. J Invest Dermatol, 143(7):1208-1219.e6. https://doi.org/10.1016/j.jid.2023.01.008https://doi.org/10.1016/j.jid.2023.01.008
Guidotti LG, Morris A, Mendez H, et al., 2002. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol, 76(6):2617-2621. https://doi.org/10.1128/jvi.76.6.2617-2621.2002https://doi.org/10.1128/jvi.76.6.2617-2621.2002
Guo JY, Han ST, Chen Q, et al., 2023. Analysis of potential immune-related genes involved in the pathogenesis of ischemia-reperfusion injury following liver transplantation. Front Immunol, 14:1126497. https://doi.org/10.3389/fimmu.2023.1126497https://doi.org/10.3389/fimmu.2023.1126497
Guo Y, Luan LM, Patil NK, et al., 2017. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev, 38:10-21. https://doi.org/10.1016/j.cytogfr.2017.08.002https://doi.org/10.1016/j.cytogfr.2017.08.002
Guo YN, Lu H, Xu L, et al., 2019. The response of hepatitis B virus genotype to interferon is associated with a mutation in the interferon-stimulated response element. Medicine (Baltimore), 98(51):e18442. https://doi.org/10.1097/MD.0000000000018442https://doi.org/10.1097/MD.0000000000018442
Hajikhezri Z, Roohvand F, Maleki M, et al., 2021. HCV core/NS3 protein immunization with “N-terminal heat shock gp96 protein (rNT (gp96))” induced strong and sustained Th1-type cytokines in immunized mice. Vaccines (Basel), 9(3):215. https://doi.org/10.3390/vaccines9030215https://doi.org/10.3390/vaccines9030215
Hama N, Yanagisawa Y, Dono K, et al., 2009. Gene expression profiling of acute cellular rejection in rat liver transplantation using DNA microarrays. Liver Transpl, 15(5):509-521. https://doi.org/10.1002/lt.21708https://doi.org/10.1002/lt.21708
Harada H, Takahashi EI, Itoh S, et al., 1994. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol, 14(2):1500-1509. https://doi.org/10.1128/mcb.14.2.1500-1509.1994https://doi.org/10.1128/mcb.14.2.1500-1509.1994
Hojo-Souza NS, de Azevedo PO, de Castro JT, et al., 2020. Contributions of IFN-γ and granulysin to the clearance of Plasmodium yoelii blood stage. PLoS Pathog, 16(9):e1008840. https://doi.org/10.1371/journal.ppat.1008840https://doi.org/10.1371/journal.ppat.1008840
Itsui Y, Sakamoto N, Kurosaki M, et al., 2006. Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J Viral Hepat, 13(10):690-700. https://doi.org/10.1111/j.1365-2893.2006.00732.xhttps://doi.org/10.1111/j.1365-2893.2006.00732.x
Janfeshan S, Yaghobi R, Eidi A, et al., 2017. Expression profile of interferon regulatory factor 1 in chronic hepatitis B virus-infected liver transplant patients. Exp Clin Transplant, 15(6):669-675. https://doi.org/10.6002/ect.2015.0302https://doi.org/10.6002/ect.2015.0302
Jeng WJ, Papatheodoridis GV, Lok ASF, 2023. Hepatitis B. Lancet, 401(10381):1039-1052. https://doi.org/10.1016/S0140-6736(22)01468-4https://doi.org/10.1016/S0140-6736(22)01468-4
Jeong WI, Park O, Radaeva S, et al., 2006. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology, 44(6):1441-1451. https://doi.org/10.1002/hep.21419https://doi.org/10.1002/hep.21419
Jiang WL, Chen GX, Pu J, 2022. The transcription factor interferon regulatory factor-1 is an endogenous mediator of myocardial ischemia reperfusion injury. Cell Biol Int, 46(1):63-72. https://doi.org/10.1002/cbin.11713https://doi.org/10.1002/cbin.11713
Jung CR, Choi S, Im DS, 2007. The NS5A protein of hepatitis C virus represses gene expression of hRPB10α, a common subunit of host RNA polymerases, through interferon regulatory factor-1 binding site. Virus Res, 129(2):155-165. https://doi.org/10.1016/j.virusres.2007.07.005https://doi.org/10.1016/j.virusres.2007.07.005
Kanazawa N, Kurosaki M, Sakamoto N, et al., 2004. Regulation of hepatitis C virus replication by interferon regulatory factor 1. J Virol, 78(18):9713-9720. https://doi.org/10.1128/JVI.78.18.9713-9720.2004https://doi.org/10.1128/JVI.78.18.9713-9720.2004
Kielar ML, Jeyarajah DR, Penfield JG, et al., 2000. Docosahexaenoic acid decreases IRF-1 mRNA and thus inhibits activation of both the IRF-E and NFκd response elements of the iNOS promoter. Transplantation, 69(10):2131-2137. https://doi.org/10.1097/00007890-200005270-00030https://doi.org/10.1097/00007890-200005270-00030
Kim GW, Imam H, Khan M, et al., 2021. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology, 73(2):533-547. https://doi.org/10.1002/hep.31313https://doi.org/10.1002/hep.31313
Kim H, Mazumdar B, Bose SK, et al., 2012. Hepatitis C virus-mediated inhibition of cathepsin S increases invariant-chain expression on hepatocyte surface. J Virol, 86(18):9919-9928. https://doi.org/10.1128/JVI.00388-12https://doi.org/10.1128/JVI.00388-12
Kim KH, Dhupar R, Ueki S, et al., 2009. Donor graft interferon regulatory factor-1 gene transfer worsens liver transplant ischemia/reperfusion injury. Surgery, 146(2):181-189. https://doi.org/10.1016/j.surg.2009.06.011https://doi.org/10.1016/j.surg.2009.06.011
Kisseleva T, Brenner D, 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol, 18(3):151-166. https://doi.org/10.1038/s41575-020-00372-7https://doi.org/10.1038/s41575-020-00372-7
Klune JR, Bartels C, Luo J, et al., 2018. IL-23 mediates murine liver transplantation ischemia-reperfusion injury via IFN-γ/IRF-1 pathway. Am J Physiol Gastrointest Liver Physiol, 315(6):G991-G1002. https://doi.org/10.1152/ajpgi.00231.2018https://doi.org/10.1152/ajpgi.00231.2018
Komoll RM, Hu QL, Olarewaju O, et al., 2021. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol, 74(1):122-134. https://doi.org/10.1016/j.jhep.2020.07.039https://doi.org/10.1016/j.jhep.2020.07.039
Korachi M, Ceran N, Adaleti R, et al., 2013. An association study of functional polymorphic genes IRF-1, IFNGR-1, and IFN-γ with disease progression, aspartate aminotransferase, alanine aminotransferase, and viral load in chronic hepatitis B and C. Int J Infect Dis, 17(1):e44-e49. https://doi.org/10.1016/j.ijid.2012.08.004https://doi.org/10.1016/j.ijid.2012.08.004
Kuramitsu K, Sverdlov DY, Liu SB, et al., 2013. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol, 183(1):182-194. https://doi.org/10.1016/j.ajpath.2013.03.018https://doi.org/10.1016/j.ajpath.2013.03.018
Lang ZC, Yu SH, Hu YH, et al., 2023. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11. Phytomedicine, 118:154950. https://doi.org/10.1016/j.phymed.2023.154950https://doi.org/10.1016/j.phymed.2023.154950
Lee SH, Kim JW, Lee HW, et al., 2003. Interferon regulatory factor-1 (IRF-1) is a mediator for interferon-γ induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression. Oncogene, 22(3):381-391. https://doi.org/10.1038/sj.onc.1206133https://doi.org/10.1038/sj.onc.1206133
Lei L, Bruneau A, el Mourabit H, et al., 2022. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology, 76(5):1360-1375. https://doi.org/10.1002/hep.32456https://doi.org/10.1002/hep.32456
Li HD, Chen X, Xu JJ, et al., 2024. GRP/GRPR enhances alcohol-associated liver injury via the IRF1-mediated Caspase-1 inflammasome and NOX2-dependent ROS pathway. Hepatology, 79(2):392-408. https://doi.org/10.1097/HEP.0000000000000531https://doi.org/10.1097/HEP.0000000000000531
Li K, Feng ZJ, Wang LS, et al., 2023. Chlorogenic acid alleviates hepatic ischemia-reperfusion injury by inhibiting oxidative stress, inflammation, and mitochondria-mediated apoptosis in vivo and in vitro. Inflammation, 46(3):1061-1076. https://doi.org/10.1007/s10753-023-01792-8https://doi.org/10.1007/s10753-023-01792-8
Li PY, Du Q, Cao ZX, et al., 2012. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett, 314(2):213-222. https://doi.org/10.1016/j.canlet.2011.09.031https://doi.org/10.1016/j.canlet.2011.09.031
Li SP, Zhang JJ, Wang Z, et al., 2016. MicroRNA-17 regulates autophagy to promote hepatic ischemia/reperfusion injury via suppression of signal transductions and activation of transcription-3 expression. Liver Transpl, 22(12):1697-1709. https://doi.org/10.1002/lt.24606https://doi.org/10.1002/lt.24606
Li SP, He JD, Xu HW, et al., 2021. Autophagic activation of IRF-1 aggravates hepatic ischemia-reperfusion injury via JNK signaling. MedComm, 2(1):91-100. https://doi.org/10.1002/mco2.58https://doi.org/10.1002/mco2.58
Li XC, Huang JQ, Wu QL, et al., 2023. Inhibition of checkpoint kinase 1 (CHK1) upregulates interferon regulatory factor 1 (IRF1) to promote apoptosis and activate anti-tumor immunity via MICA in hepatocellular carcinoma (HCC). Cancers (Basel), 15(3):850. https://doi.org/10.3390/cancers15030850https://doi.org/10.3390/cancers15030850
Li Y, Wu Y, Zheng XH, et al., 2016. Cytoplasm-translocated Ku70/80 complex sensing of HBV DNA induces hepatitis-associated chemokine secretion. Front Immunol, 7:569. https://doi.org/10.3389/fimmu.2016.00569https://doi.org/10.3389/fimmu.2016.00569
Liang S, Zhong ZY, Kim SY, et al., 2019. Murine macrophage autophagy protects against alcohol-induced liver injury by degrading interferon regulatory factor 1 (IRF1) and removing damaged mitochondria. J Biol Chem, 294(33):12359-12369. https://doi.org/10.1074/jbc.RA119.007409https://doi.org/10.1074/jbc.RA119.007409
Lin YH, Wu MH, Liao CJ, et al., 2015. Repression of microRNA-130b by thyroid hormone enhances cell motility. J Hepatol, 62(6):1328-1340. https://doi.org/10.1016/j.jhep.2014.12.035https://doi.org/10.1016/j.jhep.2014.12.035
Liu FH, Ni WJ, Zhang JJ, et al., 2017. Administration of curcumin protects kidney tubules against renal ischemia-reperfusion injury (RIRI) by modulating nitric oxide (NO) signaling pathway. Cell Physiol Biochem, 44(1):401-411. https://doi.org/10.1159/000484920https://doi.org/10.1159/000484920
Liu K, Lee J, Ou JHJ, 2018. Autophagy and mitophagy in hepatocarcinogenesis. Mol Cell Oncol, 5(2):e1405142. https://doi.org/10.1080/23723556.2017.1405142https://doi.org/10.1080/23723556.2017.1405142
Liu X, Xu J, Rosenthal S, et al., 2020. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology, 158(6):1728-1744.e14. https://doi.org/10.1053/j.gastro.2020.01.027https://doi.org/10.1053/j.gastro.2020.01.027
Lu C, Peng K, Guo H, et al., 2018. miR-18a-5p promotes cell invasion and migration of osteosarcoma by directly targeting IRF2. Oncol Lett, 16(3):3150-3156. https://doi.org/10.3892/ol.2018.9032https://doi.org/10.3892/ol.2018.9032
Mathew R, White E, 2011. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev, 21(1):113-119. https://doi.org/10.1016/j.gde.2010.12.008https://doi.org/10.1016/j.gde.2010.12.008
Miyazaki M, Ohashi R, Tsuji T, et al., 1998. Transforming growth factor-β1 stimulates or inhibits cell growth via down- or up-regulation of p21/Waf1. Biochem Biophys Res Commun, 246(3):873-880. https://doi.org/10.1006/bbrc.1998.8712https://doi.org/10.1006/bbrc.1998.8712
Miyazaki M, Sakaguchi M, Akiyama I, et al., 2004. Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor β1 in human hepatocellular carcinoma cells. Cancer Res, 64(12):4155-4161. https://doi.org/10.1158/0008-5472.CAN-03-2750https://doi.org/10.1158/0008-5472.CAN-03-2750
Monga SP, 2018. Lipid metabolic reprogramming in hepatic ischemia-reperfusion injury. Nat Med, 24(1):6-7. https://doi.org/10.1038/nm.4468https://doi.org/10.1038/nm.4468
Moriyama Y, Nishiguchi S, Tamori A, et al., 2001. Tumor-suppressor effect of interferon regulatory factor-1 in human hepatocellular carcinoma. Clin Cancer Res, 7(5):1293-1298.
Moro A, Santos A, Araña MJ, et al., 2000. Activation of the human p27Kip1 promoter by IFNα 2b. Biochem Biophys Res Commun, 269(1):31-34. https://doi.org/10.1006/bbrc.2000.2256https://doi.org/10.1006/bbrc.2000.2256
Nabavizadeh SH, Janfeshan S, Karimi MH, et al., 2018. Association between IRF1 gene expression and liver enzymes in HBV-infected liver transplant recipients with and without experience of rejection. Int J Organ Transplant Med, 9(2):68-74
Nakamura K, Kageyama S, Kupiec-Weglinski JW, 2019. The evolving role of neutrophils in liver transplant ischemia-reperfusion injury. Curr Transplant Rep, 6(1):78-89. https://doi.org/10.1007/s40472-019-0230-4https://doi.org/10.1007/s40472-019-0230-4
Nakao K, Nakata K, Yamashita M, et al., 1999. p48 (ISGF-3γ) is involved in interferon-α-induced suppression of hepatitis B virus enhancer-1 activity. J Biol Chem, 274(40):28075-28078. https://doi.org/10.1074/jbc.274.40.28075https://doi.org/10.1074/jbc.274.40.28075
Nandakumar R, Finsterbusch K, Lipps C, et al., 2013. Hepatitis C virus replication in mouse cells is restricted by IFN-dependent and -independent mechanisms. Gastroenterology, 145(6):1414-1423.e1. https://doi.org/10.1053/j.gastro.2013.08.037https://doi.org/10.1053/j.gastro.2013.08.037
Ni DL, Wei H, Chen WY, et al., 2019. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater, 31(40):1902956. https://doi.org/10.1002/adma.201902956https://doi.org/10.1002/adma.201902956
Ni YA, Chen H, Nie H, et al., 2021. HMGB1: an overview of its roles in the pathogenesis of liver disease. J Leukoc Biol, 110(5):987-998. https://doi.org/10.1002/JLB.3MR0121-277Rhttps://doi.org/10.1002/JLB.3MR0121-277R
Oh JE, Shim KY, Lee JI, et al., 2017. 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS. Int J Mol Med, 40(2):576-582. https://doi.org/10.3892/ijmm.2017.3043https://doi.org/10.3892/ijmm.2017.3043
Pan S, Liu X, Ma YJ, et al., 2018. Herpes simplex virus 1 γ134.5 protein inhibits STING activation that restricts viral replication. J Virol, 92(20):e01015-18. https://doi.org/10.1128/JVI.01015-18https://doi.org/10.1128/JVI.01015-18
Pang XL, Wang ZX, Zhai NC, et al., 2016. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid: polycytodylic acid. Int Immunopharmacol, 38:284-290. https://doi.org/10.1016/j.intimp.2016.06.013https://doi.org/10.1016/j.intimp.2016.06.013
Petta S, Valenti L, Marra F, et al., 2016. MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease. J Hepatol, 64(3):682-690. https://doi.org/10.1016/j.jhep.2015.10.016https://doi.org/10.1016/j.jhep.2015.10.016
The Polaris Observatory HCV Collaborators, 2022. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. Lancet Gastroenterol Hepatol, 7(5):396-415. https://doi.org/10.1016/S2468-1253(21)00472-6https://doi.org/10.1016/S2468-1253(21)00472-6
Qiao YL, Zhang XL, Zhao GM, et al., 2019. Hepatocellular iNOS protects liver from ischemia/reperfusion injury through HSF1-dependent activation of HSP70. Biochem Biophys Res Commun, 512(4):882-888. https://doi.org/10.1016/j.bbrc.2019.03.133https://doi.org/10.1016/j.bbrc.2019.03.133
Qiao YL, Xiao F, Li WK, et al., 2020. Hepatocellular HO-1 mediated iNOS-induced hepatoprotection against liver ischemia reperfusion injury. Biochem Biophys Res Commun, 521(4):1095-1100. https://doi.org/10.1016/j.bbrc.2019.11.053https://doi.org/10.1016/j.bbrc.2019.11.053
Rani R, Kumar S, Sharma A, et al., 2018. Mechanisms of concanavalin A-induced cytokine synthesis by hepatic stellate cells: distinct roles of interferon regulatory factor-1 in liver injury. J Biol Chem, 293(48):18466-18476. https://doi.org/10.1074/jbc.RA118.005583https://doi.org/10.1074/jbc.RA118.005583
Rosain J, Neehus AL, Manry J, et al., 2023. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell, 186(3):621-645.e33. https://doi.org/10.1016/j.cell.2022.12.038https://doi.org/10.1016/j.cell.2022.12.038
Rueschenbaum S, Cai CC, Schmidt M, et al., 2021. Translation of IRF-1 restricts hepatic interleukin-7 production to types I and II interferons: implications for hepatic immunity. Front Immunol, 11:581352. https://doi.org/10.3389/fimmu.2020.581352https://doi.org/10.3389/fimmu.2020.581352
Saito H, Tada S, Nakamoto N, et al., 2005. Contribution of Irf-1 promoter polymorphisms to the Th1-type cell response and interferon-β monotherapy for chronic hepatitis C. Hepatol Res, 32(1):25-32. https://doi.org/10.1016/j.hepres.2005.03.009https://doi.org/10.1016/j.hepres.2005.03.009
Shi H, Guan SH, 2009. Increased apoptosis in HepG2.2.15 cells with hepatitis B virus expression by synergistic induction of interferon-γ and tumour necrosis factor-α. Liver Int, 29(3):349-355. https://doi.org/10.1111/j.1478-3231.2008.01835.xhttps://doi.org/10.1111/j.1478-3231.2008.01835.x
Solomon M, Flodström-Tullberg M, Sarvetnick N, 2011. Beta-cell specific expression of suppressor of cytokine signaling-1 (SOCS-1) delays islet allograft rejection by down-regulating Interferon Regulatory Factor-1 (IRF-1) signaling. Transpl Immunol, 24(3):181-188. https://doi.org/10.1016/j.trim.2010.11.007https://doi.org/10.1016/j.trim.2010.11.007
Sorrentino C, D'Antonio L, Fieni C, et al., 2021. Colorectal cancer-associated immune exhaustion involves T and B lymphocytes and conventional NK cells and correlates with a shorter overall survival. Front Immunol, 12:778329. https://doi.org/10.3389/fimmu.2021.778329https://doi.org/10.3389/fimmu.2021.778329
Soyoz M, Pehlivan M, Tatar E, et al., 2021. Consideration of IL-2, IFN-γ and IL-4 expression and methylation levels in CD4+ T cells as a predictor of rejection in kidney transplant. Transpl Immunol, 68:101414. https://doi.org/10.1016/j.trim.2021.101414https://doi.org/10.1016/j.trim.2021.101414
Sun B, Zhou YM, Fang YT, et al., 2019. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int J Cancer, 145(6):1648-1659. https://doi.org/10.1002/ijc.32196https://doi.org/10.1002/ijc.32196
Sy BT, Hoan NX, Tong HV, et al., 2018. Genetic variants of interferon regulatory factor 5 associated with chronic hepatitis B infection. World J Gastroenterol, 24(2):248-256. https://doi.org/10.3748/wjg.v24.i2.248https://doi.org/10.3748/wjg.v24.i2.248
Tada S, Saito H, Tsunematsu S, et al., 1998. Interferon regulatory factor-1 gene abnormality and loss of growth inhibitory effect of interferon-alpha in human hepatoma cell lines. Int J Oncol, 13(6):1207-1216. https://doi.org/10.3892/ijo.13.6.1207https://doi.org/10.3892/ijo.13.6.1207
Tan AT, Schreiber S, 2020. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res, 176:104748. https://doi.org/10.1016/j.antiviral.2020.104748https://doi.org/10.1016/j.antiviral.2020.104748
Tao HS, Li L, Liao NS, et al., 2021. Thymic epithelial cell-derived IL-15 and IL-15 receptor α chain foster local environment for type 1 innate like T cell development. Front Immunol, 12:623280. https://doi.org/10.3389/fimmu.2021.623280https://doi.org/10.3389/fimmu.2021.623280
Thomas E, Cheng WH, Dylla DE, et al., 2022. Awareness and epidemiology of chronic hepatitis C virus infections in florida. Infect Dis Ther, 11(1):451-462. https://doi.org/10.1007/s40121-021-00578-5https://doi.org/10.1007/s40121-021-00578-5
Thygesen SJ, Stacey KJ, 2019. IRF1 and IRF2 regulate the non-canonical inflammasome. EMBO Rep, 20(9):e48891. https://doi.org/10.15252/embr.201948891https://doi.org/10.15252/embr.201948891
Tian XH, Liu Y, Liu XL, et al., 2019. Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis. Biomed Pharmacother, 120:109481. https://doi.org/10.1016/j.biopha.2019.109481https://doi.org/10.1016/j.biopha.2019.109481
Tsung A, Stang MT, Ikeda A, et al., 2006. The transcription factor interferon regulatory factor-1 mediates liver damage during ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol, 290(6):G1261-G1268. https://doi.org/10.1152/ajpgi.00460.2005https://doi.org/10.1152/ajpgi.00460.2005
Tsung A, Klune JR, Zhang XH, et al., 2007. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med, 204(12):2913-2923. https://doi.org/10.1084/jem.20070247https://doi.org/10.1084/jem.20070247
Ueki S, Dhupar R, Cardinal J, et al., 2010. Critical role of interferon regulatory factor-1 in murine liver transplant ischemia reperfusion injury. Hepatology, 51(5):1692-1701. https://doi.org/10.1002/hep.23501https://doi.org/10.1002/hep.23501
Villanueva A, 2019. Hepatocellular carcinoma. N Engl J Med, 380(15):1450-1462. https://doi.org/10.1056/NEJMra1713263https://doi.org/10.1056/NEJMra1713263
Wan PQ, Zhang JH, Du Q, et al., 2018a. The clinical significance and biological function of interferon regulatory factor 1 in cholangiocarcinoma. Biomed Pharmacother, 97:771-777. https://doi.org/10.1016/j.biopha.2017.10.096https://doi.org/10.1016/j.biopha.2017.10.096
Wan PQ, Chi X, Du Q, et al., 2018b. miR-383 promotes cholangiocarcinoma cell proliferation, migration, and invasion through targeting IRF1. J Cell Biochem, 119(12):9720-9729. https://doi.org/10.1002/jcb.27286https://doi.org/10.1002/jcb.27286
Wan PQ, Zhang JH, Du Q, et al., 2020. Analysis of the relationship between microRNA-31 and interferon regulatory factor-1 in hepatocellular carcinoma cells. Eur Rev Med Pharmacol Sci, 24(2):647-654. https://doi.org/10.26355/eurrev_202001_20041https://doi.org/10.26355/eurrev_202001_20041
Wang DP, Yu ZX, He ZC, et al., 2020. Apolipoprotein L1 is transcriptionally regulated by SP1, IRF1 and IRF2 in hepatoma cells. FEBS Lett, 594(19):3108-3121. https://doi.org/10.1002/1873-3468.13887https://doi.org/10.1002/1873-3468.13887
Wang JJ, Li HY, Xue BB, et al., 2020. IRF1 promotes the innate immune response to viral infection by enhancing the activation of IRF3. J Virol, 94(22):e01231-20. https://doi.org/10.1128/JVI.01231-20https://doi.org/10.1128/JVI.01231-20
Wang MH, Yin HL, Xia Y, et al., 2021. Huganbuzure granule attenuates concanavalin-A-induced immune liver injury in mice via regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting apoptosis. Evid Based Complement Alternat Med, 2021:5578021. https://doi.org/10.1155/2021/5578021https://doi.org/10.1155/2021/5578021
Wang R, Guo H, Tang XT, et al., 2022. Interferon gamma-induced interferon regulatory factor 1 activates transcription of HHLA2 and induces immune escape of hepatocellular carcinoma cells. Inflammation, 45(1):308-330. https://doi.org/10.1007/s10753-021-01547-3https://doi.org/10.1007/s10753-021-01547-3
Wang ZB, Pan BL, Qiu JC, et al., 2023. SUMOylated IL-33 in the nucleus stabilizes the transcription factor IRF1 in hepatocellular carcinoma cells to promote immune escape. Sci Signal, 16(776):eabq3362. https://doi.org/10.1126/scisignal.abq3362https://doi.org/10.1126/scisignal.abq3362
Weng HL, Feng DC, Radaeva S, et al., 2013. IFN-γ inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. J Hepatol, 59(4):738-745. https://doi.org/10.1016/j.jhep.2013.05.041https://doi.org/10.1016/j.jhep.2013.05.041
Wietzke-Braun P, Maouzi AB, Mänhardt LB, et al., 2006. Interferon regulatory factor-1 promoter polymorphism and the outcome of hepatitis C virus infection. Eur J Gastroenterol Hepatol, 18(9):991-997. https://doi.org/10.1097/01.meg.0000224478.89545.76https://doi.org/10.1097/01.meg.0000224478.89545.76
Wu HX, Li Y, Shi GJ, et al., 2022. Hepatic interferon regulatory factor 8 expression suppresses hepatocellular carcinoma progression and enhances the response to anti-programmed cell death protein-1 therapy. Hepatology, 76(6):1602-1616. https://doi.org/10.1002/hep.32316https://doi.org/10.1002/hep.32316
Xiao G, Jin LL, Liu CQ, et al., 2019. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J Immunother Cancer, 7(1):300. https://doi.org/10.1186/s40425-019-0784-9https://doi.org/10.1186/s40425-019-0784-9
Xu L, Zhou XY, Wang WS, et al., 2016. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. FASEB J, 30(10):3352-3367. https://doi.org/10.1096/fj.201600356Rhttps://doi.org/10.1096/fj.201600356R
Xu L, Wang WS, Li YL, et al., 2017. RIG-I is a key antiviral interferon-stimulated gene against hepatitis E virus regardless of interferon production. Hepatology, 65(6):1823-1839. https://doi.org/10.1002/hep.29105https://doi.org/10.1002/hep.29105
Yamane D, Feng H, Rivera-Serrano EE, et al., 2019. Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol, 4(7):1096-1104. https://doi.org/10.1038/s41564-019-0425-6https://doi.org/10.1038/s41564-019-0425-6
Yan B, Luo J, Kaltenmeier C, et al., 2020. Interferon Regulatory Factor-1 (IRF1) activates autophagy to promote liver ischemia/reperfusion injury by inhibiting β-catenin in mice. PLoS ONE, 15(11):e0239119. https://doi.org/10.1371/journal.pone.0239119https://doi.org/10.1371/journal.pone.0239119
Yan YH, Liang ZH, Du Q, et al., 2016. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells. Oncol Rep, 36(2):633-640. https://doi.org/10.3892/or.2016.4864https://doi.org/10.3892/or.2016.4864
Yan YH, Zheng LT, Du Q, et al., 2020. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol Immunother, 69(9):1891-1903. https://doi.org/10.1007/s00262-020-02586-9https://doi.org/10.1007/s00262-020-02586-9
Yan YH, Zheng LT, Du Q, et al., 2021a. Interferon regulatory factor 1 (IRF-1) activates anti-tumor immunity via CXCL10/CXCR3 axis in hepatocellular carcinoma (HCC). Cancer Lett, 506:95-106. https://doi.org/10.1016/j.canlet.2021.03.002https://doi.org/10.1016/j.canlet.2021.03.002
Yan YH, Zheng LT, Du Q, et al., 2021b. Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer, 125(1):101-111. https://doi.org/10.1038/s41416-021-01337-6https://doi.org/10.1038/s41416-021-01337-6
Yanai H, Negishi H, Taniguchi T, 2012. The IRF family of transcription factors: inception, impact and implications in oncogenesis. Oncoimmunology, 1(8):1376-1386. https://doi.org/10.4161/onci.22475https://doi.org/10.4161/onci.22475
Yang MQ, Du Q, Goswami J, et al., 2018. Interferon regulatory factor 1-Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury. Hepatology, 67(3):1056-1070. https://doi.org/10.1002/hep.29605https://doi.org/10.1002/hep.29605
Yano H, Iemura A, Haramaki M, et al., 1999. Interferon alfa receptor expression and growth inhibition by interferon alfa in human liver cancer cell lines. Hepatology, 29(6):1708-1717. https://doi.org/10.1002/hep.510290624https://doi.org/10.1002/hep.510290624
Yokota S, Yoshida O, Dou L, et al., 2015. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production. J Immunol, 194(12): 6045-6056. https://doi.org/10.4049/jimmunol.1402505https://doi.org/10.4049/jimmunol.1402505
Yu M, Xue HZ, Wang YD, et al., 2017. miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol, 50(3):975-983. https://doi.org/10.3892/ijo.2017.3852https://doi.org/10.3892/ijo.2017.3852
Yu WW, He JB, Wang F, et al., 2023. NR4A1 mediates NK-cell dysfunction in hepatocellular carcinoma via the IFN-γ/p-STAT1/IRF1 pathway. Immunology, 169(1):69-82. https://doi.org/10.1111/imm.13611https://doi.org/10.1111/imm.13611
Zekri ARN, Moharram RAN, Mohamed WS, et al., 2010. Disease progression from chronic hepatitis C to cirrhosis and hepatocellular carcinoma is associated with repression of interferon regulatory factor-1. Eur J Gastroenterol Hepatol, 22(4):450-456. https://doi.org/10.1097/MEG.0b013e3283329d00https://doi.org/10.1097/MEG.0b013e3283329d00
Zenke K, Muroi M, Tanamoto KI, 2018. IRF1 supports DNA binding of STAT1 by promoting its phosphorylation. Immunol Cell Biol, 96(10):1095-1103. https://doi.org/10.1111/imcb.12185https://doi.org/10.1111/imcb.12185
Zhang HM, Li SP, Yu Y, et al., 2016. Bi-directional roles of IRF-1 on autophagy diminish its prognostic value as compared with Ki67 in liver transplantation for hepatocellular carcinoma. Oncotarget, 7(25):37979-37992. https://doi.org/10.18632/oncotarget.9365https://doi.org/10.18632/oncotarget.9365
Zhang L, Song YL, Chen L, et al., 2020. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol, 235(4):3698-3710. https://doi.org/10.1002/jcp.29264https://doi.org/10.1002/jcp.29264
Zhang LM, Cheng TL, Yang H, et al., 2022. Interferon regulatory factor-1 regulates cisplatin-induced apoptosis and autophagy in A549 lung cancer cells. Med Oncol, 39(4):38. https://doi.org/10.1007/s12032-021-01638-zhttps://doi.org/10.1007/s12032-021-01638-z
Zhang MQ, Zhao Q, Zhang JP, 2020. A new transcription factor ATG10S activates IFNL2 transcription by binding at an IRF1 site in HepG2 cells. Autophagy, 16(12):2167-2179. https://doi.org/10.1080/15548627.2020.1719681https://doi.org/10.1080/15548627.2020.1719681
Zhang Y, Zhang JJ, Feng DY, et al., 2022. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med, 193:579-594. https://doi.org/10.1016/j.freeradbiomed.2022.11.002https://doi.org/10.1016/j.freeradbiomed.2022.11.002
Zhang YC, Zhang YL, Wang J, et al., 2020. Amarogentin inhibits liver cancer cell angiogenesis after insufficient radiofrequency ablation via affecting stemness and the p53-dependent VEGFA/Dll4/Notch1 pathway. Biomed Res Int, 2020:5391058. https://doi.org/10.1155/2020/5391058https://doi.org/10.1155/2020/5391058
Zhou H, Tang YD, Zheng CF, 2022. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev, 64:1-6. https://doi.org/10.1016/j.cytogfr.2022.01.004https://doi.org/10.1016/j.cytogfr.2022.01.004
Zhou R, Tang W, Ren YX, et al., 2006. Preventive effects of (5R)-5-hydroxytriptolide on concanavalin A-induced hepatitis. Eur J Pharmacol, 537(1-3):181-189. https://doi.org/10.1016/j.ejphar.2006.03.013https://doi.org/10.1016/j.ejphar.2006.03.013
Zhu RX, Cheng ASL, Chan HLY, et al., 2019. Growth arrest-specific gene 2 suppresses hepatocarcinogenesis by intervention of cell cycle and p53-dependent apoptosis. World J Gastroenterol, 25(32):4715-4726. https://doi.org/10.3748/wjg.v25.i32.4715https://doi.org/10.3748/wjg.v25.i32.4715
Zhu SF, Yuan W, Du YL, et al., 2023. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int, 22(1):45-53. https://doi.org/10.1016/j.hbpd.2022.07.008https://doi.org/10.1016/j.hbpd.2022.07.008
Zuo HW, Wang YX, Yuan MS, et al., 2023. Small extracellular vesicles from HO-1-modified bone marrow-derived mesenchymal stem cells attenuate ischemia-reperfusion injury after steatotic liver transplantation by suppressing ferroptosis via miR-214-3p. Cell Signal, 109:110793. https://doi.org/10.1016/j.cellsig.2023.110793https://doi.org/10.1016/j.cellsig.2023.110793
0
Views
26
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution