无数据
Scan for full text
1.School of Medicine, Lishui University, Lishui 323000, China
2.University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
3.HMU Health and Medical University, Am Anger 64/73-99084 Erfurt, Germany
汪晓庆,Sebastian LEPTIHN.细菌和噬菌体间的防御与反防御机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):181-196.
Xiaoqing WANG, Sebastian LEPTIHN. Defense and anti-defense mechanisms of bacteria and bacteriophages. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):181-196(2024)
汪晓庆,Sebastian LEPTIHN.细菌和噬菌体间的防御与反防御机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):181-196. DOI: 10.1631/jzus.B2300101.
Xiaoqing WANG, Sebastian LEPTIHN. Defense and anti-defense mechanisms of bacteria and bacteriophages. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):181-196(2024) DOI: 10.1631/jzus.B2300101.
在后抗生素时代,因抗菌药过度使用产生的超级细菌引发了严峻的耐药形势。噬菌体能特异性地杀灭细菌,且不会破坏正常菌群,可以作为一种有前景的感染治疗途径,以补充甚至取代抗生素。细菌进化出多种复杂的抵抗噬菌体感染的方式,包括流产感染和CRISPR-Cas系统,噬菌体同样也进化出反防御的策略去继续感染细菌。对细菌防御和噬菌体反防御机制的深入探索将有助于噬菌体治疗策略的优化及增加我们对微生物世界认知。为此,本文对近年来细菌抵抗噬菌体的防御机制、噬菌体的反防御机制及病毒与宿主协同共赢系统等方面的研究进展进行了综述。
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
噬菌体噬菌体抗性流产感染噬菌体治疗
BacteriophagePhage resistanceAbortive infectionPhage therapy
Anderson CW, Eigner J, 1971. Breakdown and exclusion of superinfecting T-even bacteriophage in Escherichia coli. J Virol, 8(6):869-886. https://doi.org/10.1128/jvi.8.6.869-886.1971https://doi.org/10.1128/jvi.8.6.869-886.1971
Ando H, Lemire S, Pires DP, et al., 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst, 1(3):187-196. https://doi.org/10.1016/j.cels.2015.08.013https://doi.org/10.1016/j.cels.2015.08.013
Andres D, Hanke C, Baxa U, et al., 2010. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem, 285(47):36768-36775. https://doi.org/10.1074/jbc.M110.169003https://doi.org/10.1074/jbc.M110.169003
Athukoralage JS, McMahon SA, Zhang CY, et al., 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 577(7791):572-575. https://doi.org/10.1038/s41586-019-1909-5https://doi.org/10.1038/s41586-019-1909-5
Barr JJ, 2017. A bacteriophages journey through the human body. Immunol Rev, 279(1):106-122. https://doi.org/10.1111/imr.12565https://doi.org/10.1111/imr.12565
Bertozzi Silva J, Storms Z, Sauvageau D, 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett, 363(4):fnw002. https://doi.org/10.1093/femsle/fnw002https://doi.org/10.1093/femsle/fnw002
Bisht K, Moore JL, Caprioli RM, et al., 2021. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes, 7(1):22. https://doi.org/10.1038/s41522-021-00194-8https://doi.org/10.1038/s41522-021-00194-8
Bodner K, Melkonian AL, Covert MW, 2021. The enemy of my enemy: new insights regarding bacteriophage‒mammalian cell interactions. Trends Microbiol, 29(6):528-541. https://doi.org/10.1016/j.tim.2020.10.014https://doi.org/10.1016/j.tim.2020.10.014
Bondy-Denomy J, Pawluk A, Maxwell KL, et al., 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493(7432):429-432. https://doi.org/10.1038/nature11723https://doi.org/10.1038/nature11723
Cai RP, Wu M, Zhang H, et al., 2018. A smooth-type, phage-resistant Klebsiella pneumoniae mutant strain reveals that OmpC is indispensable for infection by phage GH-K3. Appl Environ Microbiol, 84(21):e01585-18. https://doi.org/10.1128/aem.01585-18https://doi.org/10.1128/aem.01585-18
Carroll-Portillo A, Lin HC, 2019. Bacteriophage and the innate immune system: access and signaling. Microorganisms, 7(12):625. https://doi.org/10.3390/microorganisms7120625https://doi.org/10.3390/microorganisms7120625
Chevallereau A, Pons BJ, van Houte S, et al., 2022. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol, 20(1):49-62. https://doi.org/10.1038/s41579-021-00602-yhttps://doi.org/10.1038/s41579-021-00602-y
Cho YH, 2014. Molecular microbiology in antibacterial research. J Microbiol, 52(3):185-187. https://doi.org/10.1007/s12275-014-4088-yhttps://doi.org/10.1007/s12275-014-4088-y
Cohen D, Melamed S, Millman A, et al., 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature, 574(7780):691-695. https://doi.org/10.1038/s41586-019-1605-5https://doi.org/10.1038/s41586-019-1605-5
de Freitas Almeida GM, Hoikkala V, Ravantti J, et al., 2022. Mucin induces CRISPR-Cas defense in an opportunistic pathogen. Nat Commun, 13:3653. https://doi.org/10.1038/s41467-022-31330-3https://doi.org/10.1038/s41467-022-31330-3
de Jonge PA, Nobrega FL, Brouns SJJ, et al., 2019. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol, 27(1):51-63. https://doi.org/10.1016/j.tim.2018.08.006https://doi.org/10.1016/j.tim.2018.08.006
Doron S, Melamed S, Ofir G, et al., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 359(6379):eaar4120. https://doi.org/10.1126/science.aar4120https://doi.org/10.1126/science.aar4120
Dragoš A, Andersen AJC, Lozano-Andrade CN, et al., 2021. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol, 31(16):3479-3489.e5. https://doi.org/10.1016/j.cub.2021.05.046https://doi.org/10.1016/j.cub.2021.05.046
Dulbecco R, 1952. Mutual exclusion between related phages. J Bacteriol, 63(2):209-217. https://doi.org/10.1128/jb.63.2.209-217.1952https://doi.org/10.1128/jb.63.2.209-217.1952
Dunne M, Rupf B, Tala M, et al., 2019. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep, 29(5):1336-1350.e4. https://doi.org/10.1016/j.celrep.2019.09.062https://doi.org/10.1016/j.celrep.2019.09.062
Fernández L, González S, Campelo AB, et al., 2017. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep, 7:40965. https://doi.org/10.1038/srep40965https://doi.org/10.1038/srep40965
Fineran PC, Gerritzen MJH, Suárez-Diez M, et al., 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA, 111(16):E1629-E1638. https://doi.org/10.1073/pnas.1400071111https://doi.org/10.1073/pnas.1400071111
Gao HD, Shang ZF, Chan SY, et al., 2022. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):881-898. https://doi.org/10.1631/jzus.B2200068https://doi.org/10.1631/jzus.B2200068
Geisinger E, Isberg RR, 2015. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog, 11(2):e1004691. https://doi.org/10.1371/journal.ppat.1004691https://doi.org/10.1371/journal.ppat.1004691
Goldfarb T, Sberro H, Weinstock E, et al., 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J, 34(2):169-183. https://doi.org/10.15252/embj.201489455https://doi.org/10.15252/embj.201489455
Gordillo Altamirano F, Forsyth JH, Patwa R, et al., 2021. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol, 6(2):157-161. https://doi.org/10.1038/s41564-020-00830-7https://doi.org/10.1038/s41564-020-00830-7
Hirschi M, Lu WT, Santiago-Frangos A, et al., 2020. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nat Commun, 11:2730. https://doi.org/10.1038/s41467-020-16512-1https://doi.org/10.1038/s41467-020-16512-1
Hosseinidoust Z, Tufenkji N, van de Ven TGM, 2013. Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling, 29(4):457-468. https://doi.org/10.1080/08927014.2013.779370https://doi.org/10.1080/08927014.2013.779370
Hussain FA, Dubert J, Elsherbini J, et al., 2021. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science, 374(6566):488-492. https://doi.org/10.1126/science.abb1083https://doi.org/10.1126/science.abb1083
Jia N, Patel DJ, 2021. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol, 22(8):563-579. https://doi.org/10.1038/s41580-021-00371-9https://doi.org/10.1038/s41580-021-00371-9
Johnson AG, Wein T, Mayer ML, et al., 2022. Bacterial gasdermins reveal an ancient mechanism of cell death. Science, 375(6577):221-225. https://doi.org/10.1126/science.abj8432https://doi.org/10.1126/science.abj8432
Ka D, Oh H, Park E, et al., 2020. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat Commun, 11:2816. https://doi.org/10.1038/s41467-020-16703-whttps://doi.org/10.1038/s41467-020-16703-w
Kenyon JJ, Hall RM, 2013. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE, 8(4):e62160. https://doi.org/10.1371/journal.pone.0062160https://doi.org/10.1371/journal.pone.0062160
Knirel YA, Shneider MM, Popova AV, et al., 2020. Mechanisms of Acinetobacter baumannii capsular polysaccharide cleavage by phage depolymerases. Biochemistry (Mosc), 85(5):567-574. https://doi.org/10.1134/S0006297920050053https://doi.org/10.1134/S0006297920050053
Koonin EV, Krupovic M, 2020. Phages build anti-defence barriers. Nat Microbiol, 5(1):8-9. https://doi.org/10.1038/s41564-019-0635-yhttps://doi.org/10.1038/s41564-019-0635-y
Kronheim S, Daniel-Ivad M, Duan Z, et al., 2018. A chemical defence against phage infection. Nature, 564(7735):283-286. https://doi.org/10.1038/s41586-018-0767-xhttps://doi.org/10.1038/s41586-018-0767-x
Krüger DH, Schroeder C, 1981. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev, 45(1):9-51. https://doi.org/10.1128/mr.45.1.9-51.1981https://doi.org/10.1128/mr.45.1.9-51.1981
Labrie SJ, Samson JE, Moineau S, 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol, 8(5):317-327. https://doi.org/10.1038/nrmicro2315https://doi.org/10.1038/nrmicro2315
Le NH, Peters K, Espaillat A, et al., 2020. Peptidoglycan editing provides immunity to Acinetobacter baumannii during bacterial warfare. Sci Adv, 6(30):eabb5614. https://doi.org/10.1126/sciadv.abb5614https://doi.org/10.1126/sciadv.abb5614
Leavitt A, Yirmiya E, Amitai G, et al., 2022. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature, 611(7935):326-331. https://doi.org/10.1038/s41586-022-05375-9https://doi.org/10.1038/s41586-022-05375-9
Lees-Miller RG, Iwashkiw JA, Scott NE, et al., 2013. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol, 89(5):816-830. https://doi.org/10.1111/mmi.12300https://doi.org/10.1111/mmi.12300
Leitner L, McCallin S, Kessler TM, 2021. Bacteriophages: what role may they play in life after spinal cord injury? Spinal Cord, 59(9):967-970. https://doi.org/10.1038/s41393-021-00636-2https://doi.org/10.1038/s41393-021-00636-2
LeRoux M, Laub MT, 2022. Toxin-antitoxin systems as phage defense elements. Annu Rev Microbiol, 76:21-43. https://doi.org/10.1146/annurev-micro-020722-013730https://doi.org/10.1146/annurev-micro-020722-013730
Li YP, Bondy-Denomy J, 2021. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe, 29(5):704-714. https://doi.org/10.1016/j.chom.2020.12.007https://doi.org/10.1016/j.chom.2020.12.007
Loh B, Kuhn A, Leptihn S, 2019. The fascinating biology behind phage display: filamentous phage assembly. Mol Microbiol, 111(5):1132-1138. https://doi.org/10.1111/mmi.14187https://doi.org/10.1111/mmi.14187
Loh B, Chen JY, Manohar P, et al., 2020. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Front Microbiol, 11:579802. https://doi.org/10.3389/fmicb.2020.579802https://doi.org/10.3389/fmicb.2020.579802
Lu MJ, Henning U, 1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol, 2(4):137-139. https://doi.org/10.1016/0966-842X(94)90601-7https://doi.org/10.1016/0966-842X(94)90601-7
Majkowska-Skrobek G, Łątka A, Berisio R, et al., 2016. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses, 8(12):324. https://doi.org/10.3390/v8120324https://doi.org/10.3390/v8120324
Malone LM, Warring SL, Jackson SA, et al., 2020. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol, 5(1):48-55. https://doi.org/10.1038/s41564-019-0612-5https://doi.org/10.1038/s41564-019-0612-5
Manohar P, Loh B, Athira S, et al., 2020. Secondary bacterial infections during pulmonary viral disease: phage therapeutics as alternatives to antibiotics? Front Microbiol, 11:1434. https://doi.org/10.3389/fmicb.2020.01434https://doi.org/10.3389/fmicb.2020.01434
Maxwell KL, 2019. Bacterial twist to an antiviral defence. Nature, 574(7780):638-639. https://doi.org/10.1038/d41586-019-02974-xhttps://doi.org/10.1038/d41586-019-02974-x
McKitterick AC, Hays SG, Johura FT, et al., 2019. Viral satellites exploit phage proteins to escape degradation of the bacterial host chromosome. Cell Host Microbe, 26(4):504-514.e4. https://doi.org/10.1016/j.chom.2019.09.006https://doi.org/10.1016/j.chom.2019.09.006
Meeske AJ, Jia N, Cassel AK, et al., 2020. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science, 369(6499):54-59. https://doi.org/10.1126/science.abb6151https://doi.org/10.1126/science.abb6151
Mendoza SD, Nieweglowska ES, Govindarajan S, et al., 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature, 577(7789):244-248. https://doi.org/10.1038/s41586-019-1786-yhttps://doi.org/10.1038/s41586-019-1786-y
Mo CY, Mathai J, Rostøl JT, et al., 2021. Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature, 592(7855):611-615. https://doi.org/10.1038/s41586-021-03440-3https://doi.org/10.1038/s41586-021-03440-3
Mutalik VK, Adler BA, Rishi HS, et al., 2020. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol, 18(10):e3000877. https://doi.org/10.1371/journal.pbio.3000877https://doi.org/10.1371/journal.pbio.3000877
Nasrullah, Hussain A, Ahmed S, et al., 2022. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered, 13(1):1666-1685. https://doi.org/10.1080/21655979.2021.2014387https://doi.org/10.1080/21655979.2021.2014387
Nguyen S, Baker K, Padman BS, et al., 2017. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8(6):e01874-17. https://doi.org/10.1128/mbio.01874-17https://doi.org/10.1128/mbio.01874-17
Ofir G, Herbst E, Baroz M, et al., 2021. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature, 600(7887):116-120. https://doi.org/10.1038/s41586-021-04098-7https://doi.org/10.1038/s41586-021-04098-7
Owen SV, Wenner N, Dulberger CL, et al., 2021. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe, 29(11):1620-1633.e8. https://doi.org/10.1016/j.chom.2021.09.002https://doi.org/10.1016/j.chom.2021.09.002
Page R, Peti W, 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol, 12(4):208-214. https://doi.org/10.1038/nchembio.2044https://doi.org/10.1038/nchembio.2044
Papoulis SE, Wilhelm SW, Talmy D, et al., 2021. Nutrient loading and viral memory drive accumulation of restriction modification systems in bloom-forming cyanobacteria. mBio, 12(3):e0087321. https://doi.org/10.1128/mbio.00873-21https://doi.org/10.1128/mbio.00873-21
Pyne ME, Moo-Young M, Chung DA, et al., 2015. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol, 81(15):5103-5114. https://doi.org/10.1128/AEM.01248-15https://doi.org/10.1128/AEM.01248-15
Quistad SD, Grasis JA, Barr JJ, et al., 2017. Viruses and the origin of microbiome selection and immunity. ISME J, 11(4):835-840. https://doi.org/10.1038/ismej.2016.182https://doi.org/10.1038/ismej.2016.182
Rabinovitch A, Aviram I, Zaritsky A, 2003. Bacterial debris—an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol, 224(3):377-383. https://doi.org/10.1016/S0022-5193(03)00174-7https://doi.org/10.1016/S0022-5193(03)00174-7
Rocchi I, Ericson CF, Malter KE, et al., 2019. A bacterial phage tail-like structure kills eukaryotic cells by injecting a nuclease effector. Cell Rep, 28(2):295-301.e4. https://doi.org/10.1016/j.celrep.2019.06.019https://doi.org/10.1016/j.celrep.2019.06.019
Rohwer F, Segall AM, 2015. A century of phage lessons. Nature, 528(7580):46-48. https://doi.org/10.1038/528046ahttps://doi.org/10.1038/528046a
Rostøl JT, Marraffini L, 2019. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe, 25(2):184-194. https://doi.org/10.1016/j.chom.2019.01.009https://doi.org/10.1016/j.chom.2019.01.009
Rousset F, Cui L, Siouve E, et al., 2018. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet, 14(11):e1007749. https://doi.org/10.1371/journal.pgen.1007749https://doi.org/10.1371/journal.pgen.1007749
Sant DG, Woods LC, Barr JJ, et al., 2021. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat Ecol Evol, 5(3):350-359. https://doi.org/10.1038/s41559-020-01364-1https://doi.org/10.1038/s41559-020-01364-1
Secor PR, Sweere JM, Michaels LA, et al., 2015. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe, 18(5):549-559. https://doi.org/10.1016/j.chom.2015.10.013https://doi.org/10.1016/j.chom.2015.10.013
Seed KD, Lazinski DW, Calderwood SB, et al., 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 494(7438):489-491. https://doi.org/10.1038/nature11927https://doi.org/10.1038/nature11927
Shkoporov AN, Turkington CJ, Hill C, 2022. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol, 20(12):737-749. https://doi.org/10.1038/s41579-022-00755-4https://doi.org/10.1038/s41579-022-00755-4
Simon-Baram H, Kleiner D, Shmulevich F, et al., 2021. SAMase of bacteriophage T3 inactivates Escherichia coli’s methionine S-adenosyltransferase by forming heteropolymers. mBio, 12(4):e0124221. https://doi.org/10.1128/mbio.01242-21https://doi.org/10.1128/mbio.01242-21
Sørensen MCH, van Alphen LB, Harboe A, et al., 2011. Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol, 193(23):6742-6749. https://doi.org/10.1128/jb.05276-11https://doi.org/10.1128/jb.05276-11
Staes I, Bäcker LE, Simoens K, et al., 2022. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep, 39(6):110804. https://doi.org/10.1016/j.celrep.2022.110804https://doi.org/10.1016/j.celrep.2022.110804
Studier FW, Movva NR, 1976. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol, 19(1):136-145. https://doi.org/10.1128/jvi.19.1.136-145.1976https://doi.org/10.1128/jvi.19.1.136-145.1976
Swanson NA, Lokareddy RK, Li FL, et al., 2021. Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7 Å resolution. Mol Cell, 81(15):3145-3159.e7. https://doi.org/10.1016/j.molcel.2021.06.001https://doi.org/10.1016/j.molcel.2021.06.001
Sweere JM, van Belleghem JD, Ishak H, et al., 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science, 363(6434):eaat9691. https://doi.org/10.1126/science.aat9691https://doi.org/10.1126/science.aat9691
Tal N, Millman A, Stokar-Avihail A, et al., 2022. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat Microbiol, 7(8):1200-1209. https://doi.org/10.1038/s41564-022-01158-0https://doi.org/10.1038/s41564-022-01158-0
Talyansky Y, Nielsen TB, Yan J, et al., 2021. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog, 17(2):e1009291. https://doi.org/10.1371/journal.ppat.1009291https://doi.org/10.1371/journal.ppat.1009291
Tian Y, Wu M, Liu XX, et al., 2015. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv Healthc Mater, 4(3):413-419. https://doi.org/10.1002/adhm.201400508https://doi.org/10.1002/adhm.201400508
Turkington CJR, Morozov A, Clokie MRJ, et al., 2019. Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations. Front Microbiol, 10:1473. https://doi.org/10.3389/fmicb.2019.01473https://doi.org/10.3389/fmicb.2019.01473
Unterholzner SJ, Poppenberger B, Rozhon W, 2013. Toxin-antitoxin systems: biology, identification, and application. Mob Genet Elements, 3(5):e26219. https://doi.org/10.4161/mge.26219https://doi.org/10.4161/mge.26219
van Houte S, Buckling A, Westra ER, 2016. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev, 80(3):745-763. https://doi.org/10.1128/mmbr.00011-16https://doi.org/10.1128/mmbr.00011-16
Varble A, Campisi E, Euler CW, et al., 2021. Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nat Microbiol, 6(12):1516-1525. https://doi.org/10.1038/s41564-021-00996-8https://doi.org/10.1038/s41564-021-00996-8
Volozhantsev NV, Shpirt AM, Borzilov AI, et al., 2020. Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with β galactosidase activity against Klebsiella pneumoniae K57 capsular type. Antibiotics, 9(11):732. https://doi.org/10.3390/antibiotics9110732https://doi.org/10.3390/antibiotics9110732
Wahida A, Tang F, Barr JJ, 2021. Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. Cell Host Microbe, 29(5):681-688. https://doi.org/10.1016/j.chom.2021.02.007https://doi.org/10.1016/j.chom.2021.02.007
Wang CY, Tu JG, Liu J, et al., 2019. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat Microbiol, 4(6):1049-1056. https://doi.org/10.1038/s41564-019-0403-zhttps://doi.org/10.1038/s41564-019-0403-z
Wang XQ, Loh B, Gordillo Altamirano F, et al., 2021. Colistin-phage combinations decrease antibiotic resistance in Acinetobacter baumannii via changes in envelope architecture. Emerg Microbes Infect, 10(1):2205-2219. https://doi.org/10.1080/22221751.2021.2002671https://doi.org/10.1080/22221751.2021.2002671
Westra ER, van Houte S, Oyesiku-Blakemore S, et al., 2015. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol, 25(8):1043-1049. https://doi.org/10.1016/j.cub.2015.01.065https://doi.org/10.1016/j.cub.2015.01.065
Wetzel KS, Guerrero-Bustamante CA, Dedrick RM, et al., 2021. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci Rep, 11:6796. https://doi.org/10.1038/s41598-021-86112-6https://doi.org/10.1038/s41598-021-86112-6
Xie YC, Wahab L, Gill JJ, 2018. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses, 10(4):189. https://doi.org/10.3390/v10040189https://doi.org/10.3390/v10040189
Yang H, Patel DJ, 2017. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell, 67(1):117-127.e5. https://doi.org/10.1016/j.molcel.2017.05.024https://doi.org/10.1016/j.molcel.2017.05.024
Yang JY, Fang WW, Miranda-Sanchez F, et al., 2021. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst, 12(8):771-779.e5. https://doi.org/10.1016/j.cels.2021.05.019https://doi.org/10.1016/j.cels.2021.05.019
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution