无数据
Scan for full text
1.Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
2.Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
3.National Key Laboratory of Rice Biology and Breeding / The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
Chinnannan KARTHIK, Qingyao SHU. Current insights on rice (
Chinnannan KARTHIK, Qingyao SHU. Current insights on rice (
恶苗病是由种传或土传藤仓镰孢菌(,Fusarium,fujikuroi,)引起的一种水稻的新兴病害,正日益威胁着世界不同产区水稻的可持续生产。恶苗病发病率因地区和品种而异,造成的产量损失可达3%~95%。认识恶苗病病原菌的特性、致病性、病害流行学、病害症状、寄主–病原菌互作以及病害发生周期中次生代谢物的作用,将有助于制定高效、可持续的病害防治策略,但迄今仍缺乏对水稻恶苗病全面和详细的描述。为此,本篇综述对1898至2023年间恶苗病各关键领域的研究进行总结和深入探讨,并对今后研究提出展望。
Bakanae is an emerging rice disease caused by the seed- and soil-borne pathogen ,Fusarium,fujikuroi,. It is becoming a more serious threat to sustainable rice production throughout rice-growing regions. Bakanae disease infection is responsible for high yield losses ranging from 3% to 95%, and disease incidence varies based on the region and cultivars. Hence, understanding the nature of the pathogen, its pathogenicity, disease epidemiology, symptoms, host–pathogen interaction, and the role of secondary metabolites in the disease cycle will be helpful in the development of effective and sustainable management strategies. However, very few comprehensive studies have described the details of rice bakanae disease. Thus, in this review we summarize and discuss in detail the information available from 1898 to 2023 on various critical facets of bakanae disease, and provide perspectives on future research.
水稻恶苗病藤仓镰孢菌寄主–病原菌互作致病性赤霉素信号传导病害治理
RiceBakanae diseaseFusarium fujikuroiHost–pathogen interactionPathogenicityGibberellic acid signalingDisease management
Adeleye A, Ikotun T, 1989. Antifungal activity of dihydrodioscorine extracted from a wild variety of Dioscorea bulbifera L. J Basic Microbiol, 29(5):265-267. https://doi.org/10.1002/jobm.3620290504https://doi.org/10.1002/jobm.3620290504
Ahangar AM, Bhat ZA, Najeeb S, et al., 2014. Bakanae disease: a new threat to rice production under temperate ecology of Kashmir. J Agric Life Sci, 1(2):45-47.
Aktas H, Tunali B, 1986. Determination of the reactions of promising rice cultivars and lines to Pyricularia oryzae Bri. & Cav., Drechslera oryzae Subram. & Jain and Fusarium moniliforme Sheld. in Turkey. Bitki Koruma Bull, 26(1-2):41-58.
Bashyal BM, 2018. Etiology of an emerging disease: bakanae of rice. Ind Phytopathol, 71(4):485-494. https://doi.org/10.1007/s42360-018-0091-2https://doi.org/10.1007/s42360-018-0091-2
Bashyal BM, Aggarwal R, 2013. Molecular identification of Fusarium spp. associated with bakanae disease of rice in India. Indian J Agric Sci, 83(1):72-77.
Bashyal BM, Aggarwal R, Banerjee S, et al., 2014. Pathogenicity, ecology and genetic diversity of the Fusarium spp. associated with an emerging bakanae disease of rice (Oryza sativa L.) in India. In: Kharwar RN, Upadhyay RS, Dubey NK, et al. (Eds.), Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi, p.307-314. https://doi.org/10.1007/978-81-322-1801-2_27https://doi.org/10.1007/978-81-322-1801-2_27
Bashyal BM, Aggarwal R, Sharma S, et al., 2016. Single and combined effects of three Fusarium species associated with rice seeds on the severity of bakanae disease of rice. J Plant Pathol, 98(2):405-412. https://doi.org/10.4454/JPP.V98I3.001https://doi.org/10.4454/JPP.V98I3.001
Bashyal BM, Rawat K, Sharma S, et al., 2017. Whole genome sequencing of Fusarium fujikuroi provides insight into the role of secretory proteins and cell wall degrading enzymes in causing bakanae disease of rice. Front Plant Sci, 8:2013. https://doi.org/10.3389/fpls.2017.02013https://doi.org/10.3389/fpls.2017.02013
Bashyal BM, Aggarwal R, Rawat K, et al., 2020. Genetic diversity and population structure of Fusarium fujikuroi causing Bakanae, an emerging disease of rice in India. Indian J Exp Biol, 58(1):45-52.
Bashyal BM, Gupta AK, Parmar P, et al., 2022. Management of bakanae disease using fungicides and their effect on disease symptomatology. Indian J Agric Sci, 92(9):56-61. https://doi.org/10.56093/ijas.v92i8.112530https://doi.org/10.56093/ijas.v92i8.112530
Bhramaramba S, Nagamani A, 2013. Antagonistic Trichoderma isolates to control bakanae pathogen of rice. Agric Sci Digest, 33(2):104-108.
Chen CY, Chen SY, Liu CW, et al., 2020. Invasion and colonization pattern of Fusarium fujikuroi in Rice. Phytopathology, 110(12):1934-1945. https://doi.org/10.1094/PHYTO-03-20-0068-Rhttps://doi.org/10.1094/PHYTO-03-20-0068-R
Chen SY, Lai MH, Tung CW, et al., 2019. Genome-wide association mapping of gene loci affecting disease resistance in the rice-Fusarium fujikuroi pathosystem. Rice, 12:85. https://doi.org/10.1186/s12284-019-0337-3https://doi.org/10.1186/s12284-019-0337-3
Chen TT, Wu X, Dai YY, et al., 2022. Sensitivity testing of natural antifungal agents on Fusarium fujikuroi to investigate the potential for sustainable control of kiwifruit leaf spot disease. J Fungi, 8(3):239. https://doi.org/10.3390/jof8030239https://doi.org/10.3390/jof8030239
Chen ZH, Gao T, Liang SP, et al., 2014. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. FEMS Microbiol Lett, 357(1):77-84. https://doi.org/10.1111/1574-6968.12504https://doi.org/10.1111/1574-6968.12504
Cheon KS, Jeong YM, Lee YU, et al., 2019. Kompetitive allele-specific PCR marker development and quantitative trait locus mapping for bakanae disease resistance in Korean japonica rice varieties. Plant Breed Biotech, 7:208-219. https://doi.org/10.9787/PBB.2019.7.3.208https://doi.org/10.9787/PBB.2019.7.3.208
Chiara M, Fanelli F, Mulè G, 2015. Genome sequencing of multiple isolates highlights subtelomeric genomic diversity within Fusarium fujikuroi. Genome Biol Evol, 7(11):3062-3069. https://doi.org/10.1093/gbe/evv198https://doi.org/10.1093/gbe/evv198
Childs N, LeBeau B, 2023. USDA (The United States Department of Agriculture), Rice Outlook: August 2023. https://www.ers.usda.gov/publications/pub-details/?pubid=107163https://www.ers.usda.gov/publications/pub-details/?pubid=107163
Chincinska IA, Miklaszewska M, Sołtys-Kalina D, 2023. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta, 257:25. https://doi.org/10.1007/s00425-022-04054-3https://doi.org/10.1007/s00425-022-04054-3
Chung EJ, Hossain MT, Khan A, et al., 2015. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J, 31(2):152-164. https://doi.org/10.5423/PPJ.OA.12.2014.0136https://doi.org/10.5423/PPJ.OA.12.2014.0136
Curtis PJ, Cross BE, 1954. Gibberellic acid. A new metabolite from the culture filtrates of Gibberella fujikuroi. Chem Ind, 35:1066.
Dehkaei FP, Jajaei SHM, Rouhani JH, 2004. Effects of paddy soil antagonistic microorganisms of Guilan on the causal agent of rice bakanae disease. J Sci Technol Agric Nat Resources, 8(1):213-222.
Desjardins AE, Manandhar HK, Plattner RD, et al., 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol, 66(3):1020-1025. https://doi.org/10.1128/aem.66.3.1020-1025.2000https://doi.org/10.1128/aem.66.3.1020-1025.2000
Fang JF, Zeng DF, Xu T, 2023. Preparation of an environmentally friendly rice seed coating agent and study of its mechanism of action in seedlings. Sustainability, 15(1):869. https://doi.org/10.3390/su15010869https://doi.org/10.3390/su15010869
Fiyaz RA, Yadav AK, Krishnan SG, et al., 2016. Mapping quantitative trait loci responsible for resistance to Bakanae disease in rice. Rice, 9:45. https://doi.org/10.1186/s12284-016-0117-2https://doi.org/10.1186/s12284-016-0117-2
Gangopadhyay S, Kapoor KS, 1977. Control of Fusarium wilt of okra with seed treatment. Indian J Mycol Plant Pathol, 7(2):147-149.
Gao XH, Xiao SL, Yao QF, et al., 2011. An updated GA signaling ‘relief of repression’ regulatory model. Mol Plant, 4(4):601-606. https://doi.org/10.1093/mp/ssr046https://doi.org/10.1093/mp/ssr046
Ghazanfar MU, Javed N, Wakil W, et al., 2013. Screening of some fine and coarse rice varieties against bakanae disease. J Agric Res, 51(1):41-49.
Gupta A, Kumar R, Maheshwar VK, 2015. Integration of seed treatments, seedling dip treatments and soil amendments for the management of bakanae disease in paddy variety Pusa Basmati 1121. Plant Pathol J, 14(4):207-211. https://doi.org/10.3923/ppj.2015.207.211https://doi.org/10.3923/ppj.2015.207.211
Gupta AK, Solanki IS, Bashyal BM, et al., 2015. Bakanae of rice-an emerging disease in Asia. J Anim Plant Sci, 25(6):1499-1514.
Hajipour A, Sohani MM, Babaeizad V, et al., 2015. The symbiotic effect of Piriformospora indica on induced resistance against bakanae disease in rice (Oryza sativa L.). J Plant Mol Breed, 3(2):11-19. https://doi.org/10.22058/JPMB.2015.15370https://doi.org/10.22058/JPMB.2015.15370
Halim WNAWA, Razak AA, Ali J, et al., 2015. Susceptibility of Malaysian rice varieties to Fusarium fujikuroi and in vitro activity of Trichoderma harzianum as biocontrol agent. Malaysian J Microbiol, 11(1):20-26. https://doi.org/10.21161/mjm.61714https://doi.org/10.21161/mjm.61714
Hartsuck JA, Lipscomb WN, 1963. Molecular and crystal structure of the di-p-bromobenzoate of the methyl ester of gibberellic acid. J Am Chem Soc, 85(21):3414-3419.
Hori S, 1898. Some observations on “Bakanae” disease of the rice plant. Mem Agric Res Sta (Tokyo), 12:110-119.
Hossain KS, Mia MAT, Bashar MA, 2013. New method for screening rice varieties against bakanae disease. Bangladesh J Bot, 42(2):315-320. https://doi.org/10.3329/bjb.v42i2.18036https://doi.org/10.3329/bjb.v42i2.18036
Hossain MT, Khan A, Chung EJ, et al., 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol J, 32(3):228-241. https://doi.org/10.5423/PPJ.OA.10.2015.0218https://doi.org/10.5423/PPJ.OA.10.2015.0218
Hur YJ, Lee SB, Kim TH, et al., 2015. Mapping of qBK1, a major QTL for bakanae disease resistance in rice. Mol Breed, 35(2):78. https://doi.org/10.1007/s11032-015-0281-xhttps://doi.org/10.1007/s11032-015-0281-x
Ilija KK, Mitrw SK, Kostadin ED, 2009. Gibberella fujikuroi (Sawada) Wollenweber, the new parasitical fungus on rice in the Republic of Macedonia. Prot Nat Sci, (116):175-182. https://doi.org/10.2298/ZMSPN0916175Khttps://doi.org/10.2298/ZMSPN0916175K
Ilyas MB, Iftikhar K, 1997. Screening of rice germplasm and fungi toxicants against bakanae disease of rice. Pak J Phytopathol, 9(1):67-73.
Iqbal M, Javed N, Sahi ST, et al., 2011. Genetic management of bakanae disease of rice and evaluation of various fungicides against/Fusarium moniliforme in vitro. Pak J Phytopathol, 23:103-107.
Ito S, Kimura J, 1931. Studies on the bakanae disease of the rice plant. Rep Hokkaido Natl Agric Exp Stn, 27:1-95.
Jain J, Sidhu N, Lore JS, et al., 2016. Evaluation of aromatic rice genotypes for resistance against foot rot disease. Plant Dis Res, 31(2):150-153.
Janevska S, Tudzynski B, 2018. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol, 102(2):615-630. https://doi.org/10.1007/s00253-017-8679-5https://doi.org/10.1007/s00253-017-8679-5
Jeong H, Lee S, Choi GJ, et al., 2013. Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the bakanae disease of rice. Genome Announc, 1(1):e00035-13. https://doi.org/10.1128/genomeA.00035-13https://doi.org/10.1128/genomeA.00035-13
Ji H, Kim TH, Lee DS, et al., 2018. Mapping of a major quantitative trait locus for bakanae disease resistance in rice by genome resequencing. Mol Genet Genomics, 293(3):579-586. https://doi.org/10.1007/s00438-017-1407-0https://doi.org/10.1007/s00438-017-1407-0
Jiang HP, Kan LB, Ding LL, et al., 1999. Seed dressing with Chitosan S-II can control bakanae disease of rice. China Rice, 5:29.
Jing LF, Suga H, 2021. Various methods for controlling the bakanae disease in rice. Rev Agric Sci, 9:195-205. https://doi.org/10.7831/ras.9.0_195https://doi.org/10.7831/ras.9.0_195
Kang DU, Cheon KS, Oh J, et al., 2019. Rice genome resequencing reveals a major quantitative trait locus for resistance to bakanae disease caused by Fusarium fujikuroi. Int J Mol Sci, 20(10):2598. https://doi.org/10.3390/ijms20102598https://doi.org/10.3390/ijms20102598
Kang YS, Kim WJ, Kim YJ, et al., 2016. Bakanae disease reduction effect by use of silicate coated seed in wet direct-seeded rice. Korean J Crop Sci, 61(1):9-16. https://doi.org/10.7740/kjcs.2016.61.1.009https://doi.org/10.7740/kjcs.2016.61.1.009
Kanjanasoon P, 1965. Studies on the Bakanae Disease of Rice in Thailand. PhD Dissemination, Tokyo University, Tokyo, Japan.
Kato A, Miyake T, Nishigata K, et al., 2012. Use of fluorescent proteins to visualize interactions between the Bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talaromyces sp. KNB-422. J Gen Plant Pathol, 78(1):54-61. https://doi.org/10.1007/s10327-011-0343-9https://doi.org/10.1007/s10327-011-0343-9
Katoch P, Katoch A, Paudel M, et al., 2019. Bakanae of rice: a serious disease in Punjab. Int J Curr Microbiol Appl Sci, 8(5):129-136. https://doi.org/10.20546/ijcmas.2019.805.017https://doi.org/10.20546/ijcmas.2019.805.017
Kazempour MN, Elahinia SA, 2007. Biological control of Fusarium fujikuroi, the causal agent of bakanae disease by rice associated antagonistic bacteria. Bulg J Agri Sci, 13:393-408.
Kazempour MN, Anvary M, 2009. Isolation of Fusarium fujikuroi antagonistic bacteria and cloning of its phenazine carboxylic acid genes. Afr J Biotechnol, 8(23):6506-6510. https://doi.org/10.4314/ajb.v8i23.66175https://doi.org/10.4314/ajb.v8i23.66175
Kazempour MN, Tabatabaei SM, Hassanzadeh N, 2007. Genetic diversity of antagonistic bacteria against sheath blight and bakanae rice disease by RAPD. Int J Biol Biotechnol, 4(4):329-333.
Kim D, Jeong S, Kim B, et al., 2023. Automated detection of rice bakanae disease via drone imagery. Sensors, 23(1):32. https://doi.org/10.3390/s23010032https://doi.org/10.3390/s23010032
Kim MH, Hur YJ, Lee SB, et al., 2014. Large-scale screening of rice accessions to evaluate resistance to bakanae disease. J Gen Plant Pathol, 80(5):408-414. https://doi.org/10.1007/s10327-014-0528-0https://doi.org/10.1007/s10327-014-0528-0
Kim SW, Park JK, Lee CH, et al., 2016. Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against Fusarium fujikuroi causing rice bakanae disease. Curr Microbiol, 72(4):496-502. https://doi.org/10.1007/s00284-015-0973-9https://doi.org/10.1007/s00284-015-0973-9
Kuhlman EG, 1982. Varieties of Gibberella fujikuroi with anamorphs in Fusarium section Liseola. Mycologia, 74(5):759-768. https://doi.org/10.1080/00275514.1982.12021583https://doi.org/10.1080/00275514.1982.12021583
Kumakura K, Watanabe S, Toyoshima J, 2003. Effect of Trichoderma sp. SKT-1 on suppression of six different seedborne diseases of rice. Jpn J Phytopathol, 69(4):393-402. https://doi.org/10.3186/jjphytopath.69.393https://doi.org/10.3186/jjphytopath.69.393
Kumar MN, Laha GS, Reddy CS, 2007. Role of antagonistic bacteria in suppression of bakanae disease of rice caused by Fusarium moniliforme Sheld. J Biol Control, 21(1):97-104.
Kumar P, Sunder S, Singh R, et al., 2016. Management of foot rot and bakanae of rice through non-chemical methods. Indian Phytopathol, 69(1):16-20.
Kurosawa E, 1926. Experimental studies on the nature of the substance excreted by the ‘bakanae’ fungus. Trans Nat Hist Soc Formos, 16:213-227.
Kusakari S, Achiwa N, Abe K, 2004. Control of bakanae disease by soaking seed in heated electrolyzed acid water (EAW) under field conditions. J Antibact Antifungal Agents, 32(12):581-585.
Kwon SW, Kim NE, Jin SH, et al., 2021. Evaluation of the rsistant to bakanae disease in Korean rice landraces (Oryza sativa L.). Plant Breed Biotech, 9(4):355-359. https://doi.org/10.9787/PBB.2021.9.4.355https://doi.org/10.9787/PBB.2021.9.4.355
Lee SB, Hur YJ, Cho JH, et al., 2018. Molecular mapping of qBK1WD, a major QTL for bakanae disease resistance in rice. Rice, 11:3. https://doi.org/10.1186/s12284-017-0197-7https://doi.org/10.1186/s12284-017-0197-7
Lee SB, Kim N, Hur YJ, et al., 2019. Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice. Rice, 12:36. https://doi.org/10.1186/s12284-019-0295-9https://doi.org/10.1186/s12284-019-0295-9
Lee SB, Kim N, Jo S, et al., 2021. Mapping of a major QTL, qBK1Z, for bakanae disease resistance in rice. Plants, 10(3):434. https://doi.org/10.3390/plants10030434https://doi.org/10.3390/plants10030434
Lee YH, Lee MJ, Choi HW, et al., 2011. Development of in vitro seedling screening method for selection of resistant rice against bakanae disease. Res Plant Dis, 17(3):288-294. https://doi.org/10.5423/RPD.2011.17.3.288https://doi.org/10.5423/RPD.2011.17.3.288
Li B, Xie GL, Lü YL, et al., 2006. Community composition of Gram-positive bacteria associated with rice and their antagonists against the pathogens of sheath blight and bakanae disease of rice. Chin J Rice Sci, 20(1):84-88 (in Chinese). https://doi.org/10.3321/j.issn:1001-7216.2006.01.015https://doi.org/10.3321/j.issn:1001-7216.2006.01.015
Li C, Brant E, Budak H, et al., 2021. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(4):253-284. https://doi.org/10.1631/jzus.B2100009https://doi.org/10.1631/jzus.B2100009
Li FJ, Ebihara A, Sakahara Y, et al., 2023. Synergistic effect of amino acid substitutions in CYP51B for prochloraz resistance in Fusarium fujikuroi. Pestic Biochem Physiol, 189:105291. https://doi.org/10.1016/j.pestbp.2022.105291https://doi.org/10.1016/j.pestbp.2022.105291
Li MX, Li T, Duan YB, et al., 2018. Evaluation of phenamacril and ipconazole for control of rice bakanae disease caused by Fusarium fujikuroi. Plant Dis, 102(7):1234-1239. https://doi.org/10.1094/PDIS-10-17-1521-REhttps://doi.org/10.1094/PDIS-10-17-1521-RE
Lima CS, Pfenning LH, Costa SS, et al., 2012. Fusarium tupiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia, 104(6):1408-1419. https://doi.org/10.3852/12-052https://doi.org/10.3852/12-052
Lone ZA, Bhat ZA, Najeeb S, et al., 2016. Screening of rice genotypes against bakanae disease caused by Fusarium fujikuroi Nirenberg. Oryza, 53(1):91-97.
Ma J, Chen J, Wang M, et al., 2018. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot, 69(5):1051-1064. https://doi.org/10.1093/jxb/erx458https://doi.org/10.1093/jxb/erx458
Malonek S, Bömke C, Bornberg-Bauer E, 2005. Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry, 66(11):1296-1311. https://doi.org/10.1016/j.phytochem.2005.04.012https://doi.org/10.1016/j.phytochem.2005.04.012
Manandhar J, 1999. Fusarium moniliforme in rice seeds: its infection, isolation, and longevity. J Plant Dis Prot, 106(6):598-607.
Manandhar T, Yami KD, 2008. Biological control of foot rot disease of rice using fermented products of compost and vermicompost. Sci World, 6(6):52-57. https://doi.org/10.3126/sw.v6i6.2634https://doi.org/10.3126/sw.v6i6.2634
Mancini V, Romanazzi G, 2014. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag Sci, 70(6):860-868. https://doi.org/10.1002/ps.3693https://doi.org/10.1002/ps.3693
Mandal DN, Chaudhuri S, 1988. Survivality of Fusarium moniliforme Sheld. under different moisture regimes and soil conditions. Int J Trop Plant Dis, 6:201-206.
Matić S, Spadaro D, Garibaldi A, et al., 2014. Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol Cont, 73:59-67. https://doi.org/10.1016/j.biocontrol.2014.03.008https://doi.org/10.1016/j.biocontrol.2014.03.008
Matic S, Gullino ML, Spadaro D, 2017. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front Biosci (Elite Ed), 9(2):333-344. https://doi.org/10.2741/e806https://doi.org/10.2741/e806
Mende K, Homann V, Tudzynski B, 1997. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet, 255(1):96-105. https://doi.org/10.1007/s004380050477https://doi.org/10.1007/s004380050477
Mishra D, Samuel CO, Tripathi SC, 2003. Evaluation of some essential oils against seed-borne pathogens of rice. Ind Phytopath, 56:212-213.
Miyasaka A, Sonoda R, Iwano M, 2000. Control of the bakanae disease of rice by soaking seeds in hot water for the hydroponically raised seedling method in the long-mat type rice cultivation. Annu Rep Kanto-Tosan Plant Prot Soc, 2000(47):31-33. https://doi.org/10.11337/ktpps1999.2000.31https://doi.org/10.11337/ktpps1999.2000.31
Mohana DC, Prasad P, Vijaykumar V, et al., 2011. Plant extract effect on seed-borne pathogenic fungi from seeds of paddy grown in Southern India. J Plant Prot Res, 51(2):101-106. https://doi.org/10.2478/v10045-011-0018-8https://doi.org/10.2478/v10045-011-0018-8
Moretti A, Mulè G, Susca A, et al., 2004. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur J Plant Pathol, 110(5):601-609. https://doi.org/10.1023/B:EJPP.0000032399.83330.d7https://doi.org/10.1023/B:EJPP.0000032399.83330.d7
Ng LC, Ngadin A, Azhari M, et al., 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian J Plant Pathol, 9(2):46-58. https://doi.org/10.3923/ajppaj.2015.46.58https://doi.org/10.3923/ajppaj.2015.46.58
Niehaus EM, Kim KH, Münsterkötter M, et al., 2017. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog, 13(10):e1006670. https://doi.org/10.1371/journal.ppat.1006670https://doi.org/10.1371/journal.ppat.1006670
Nirenberg H, 1976. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Kommissionsverlag Paul Parey, Berlin, Germany, p.1-117 (in German). https://doi.org/10.5073/20210624-085725https://doi.org/10.5073/20210624-085725
Ochi A, Konishi H, Ando S, et al., 2017. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol, 66(1):67-76. https://doi.org/10.1111/ppa.12555https://doi.org/10.1111/ppa.12555
Oh TS, Park YJ, Kim SM, et al., 2016. Seed disinfectant effect of Pleurotus ostreatus (Heuktari) extract on Fusarium fujikuroi Nirenberg. Korean J Org Agric, 24(1):61-71. https://doi.org/10.11625/KJOA.2016.24.1.61https://doi.org/10.11625/KJOA.2016.24.1.61
Oh TS, Park YJ, Kim CH, et al., 2017. Effect of seed disinfection on bakanae disease in Ginkgo biloba outer seed coat extract. Emir J Food Agric, 28(9):671-675. https://doi.org/10.9755/ejfa.2016-04-357https://doi.org/10.9755/ejfa.2016-04-357
Pal S, Khilari K, Jain SK, et al., 2019. Management of bakanae disease of rice through combination of Trichoderma spp. and fungicides. Int J Curr Microbiol App Sci, 8(11):494-501. https://doi.org/10.20546/ijcmas.2019.811.060https://doi.org/10.20546/ijcmas.2019.811.060
Panneerselvam A, Saravanamuthu R, 1996. Studies on the saprophytic survival of Fusarium moniliforme J. Sheld in soil under treatment of oil cakes. Indian J Agric Res, 30(1):12-16.
Pannu PPS, Kaur J, Singh G, et al., 2012. Survival of Fusarium moniliforme causing foot rot of rice and its virulence on different genotypes of rice and basmati rice. Indian Phytopathol, 65:149-209.
Pattanaik S, Patra B, Singh SK, et al., 2014. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front Plant Sci, 5:259. https://doi.org/10.3389/fpls.2014.00259https://doi.org/10.3389/fpls.2014.00259
Pawar BT, 2011. Antifungal activity of some leaf extracts against seed-borne pathogenic fungi. Int Multidiscipl Res J, 1/4:11-13.
Peng Q, Younas MW, Yang JK, et al., 2022. Characterization of prochloraz resistance in Fusarium fujikuroi from Heilongjiang Province in China. Plant Dis, 106(2):418-424. https://doi.org/10.1094/PDIS-02-21-0372-REhttps://doi.org/10.1094/PDIS-02-21-0372-RE
Petrovic T, Burgess LW, Cowie I, et al., 2013. Diversity and fertility of Fusarium sacchari from wild rice (Oryza australiensis) in Northern Australia, and pathogenicity tests with wild rice, rice, sorghum and maize. Eur J Plant Pathol, 136(4):773-788. https://doi.org/10.1007/s10658-013-0206-7https://doi.org/10.1007/s10658-013-0206-7
Piombo E, Rosati M, Sanna M, et al., 2021. Sequencing of non-virulent strains of Fusarium fujikuroi reveals genes putatively involved in bakanae disease of rice. Fungal Genet Biol, 156:103622. https://doi.org/10.1016/j.fgb.2021.103622https://doi.org/10.1016/j.fgb.2021.103622
Proctor RH, Desjardins AE, Moretti A, 2010. Biological and chemical complexity of Fusarium proliferatum. In: Strange RN, Gullino ML (Eds.), The Role of Plant Pathology in Food Safety and Food Security. Springer, Dordrecht, p.97-111. https://doi.org/10.1007/978-1-4020-8932-9_9https://doi.org/10.1007/978-1-4020-8932-9_9
Ptaszek M, Canfora L, Pugliese M, et al., 2023. Microbial-based products to control soil-borne pathogens: methods to improve efficacy and to assess impacts on microbiome. Microorganisms, 11(1):224. https://doi.org/10.3390/microorganisms11010224https://doi.org/10.3390/microorganisms11010224
Puyam A, Pannu PPS, Sethi S, et al., 2017. Evaluation of resistance sources against foot rot and bakanae disease of basmati rice. Agric Res J, 54(4):594-596. https://doi.org/10.5958/2395-146X.2017.00115.6https://doi.org/10.5958/2395-146X.2017.00115.6
Puyam A, Pannu PPS, Kaur J, et al., 2019. Understanding bakanae: a major threat and an emerging disease of basmati rice. Indian Phytopathol, 72(4):599-605. https://doi.org/10.1007/s42360-018-0069-0https://doi.org/10.1007/s42360-018-0069-0
Qu XP, Li JS, Wang JX, et al., 2018. Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. Pestic Biochem Physiol, 152:98-105. https://doi.org/10.1016/j.pestbp.2018.09.010https://doi.org/10.1016/j.pestbp.2018.09.010
Radwan O, Gunasekera TS, Ruiz ON, 2018. Draft genome sequence of Fusarium fujikuroi, a fungus adapted to the fuel environment. Genome Announc, 6(3):e01499-17. https://doi.org/10.1128/genomeA.01499-17https://doi.org/10.1128/genomeA.01499-17
Raghu S, Yadav MK, Prabhukarthikeyan SR, et al., 2018. Occurance, pathogenicity, characterization of Fusarium fujikuroi causing rice bakanae disease from Odisha and in vitro management. Oryza, 55(1):214-223. https://doi.org/10.5958/2249-5266.2018.00025.5https://doi.org/10.5958/2249-5266.2018.00025.5
Ramesh NK, Naeimi S, Rezaee S, et al., 2020. Biological control of rice bakanae disease caused by Fusarium fujikuroi using some endophytic fungi. J Appl Entomol Phytopathol, 87(2):281-296. https://doi.org/10.22092/jaep.2020.128244.1309https://doi.org/10.22092/jaep.2020.128244.1309
Rawat K, Tripathi SB, Kaushik N, et al., 2022. Management of bakanae disease of rice using biocontrol agents and insights into their biocontrol mechanisms. Arch Microbiol, 204(7):401. https://doi.org/10.1007/s00203-022-02999-3https://doi.org/10.1007/s00203-022-02999-3
Rosales AM, Nuque FL, Mew TW, 1986. Biological control of bakanae diseases of rice with antagonistic bacteria. Phil Phytopathol, 22:29-35.
Rosales AM, Mew TW, 1997. Suppression of Fusarium moniliforme in rice by rice-associated antagonistic bacteria. Plant Dis, 81(1):49-52. https://doi.org/10.1094/PDIS.1997.81.1.49https://doi.org/10.1094/PDIS.1997.81.1.49
Saito H, Sasaki M, Nonaka Y, et al., 2021. Spray application of nonpathogenic Fusaria onto rice flowers controls bakanae disease (caused by Fusarium fujikuroi) in the next plant generation. Appl Environ Microbiol, 87(2):e01959-20. https://doi.org/10.1128/AEM.01959-20https://doi.org/10.1128/AEM.01959-20
Sarwar A, Hassan NM, Imran M, 2018. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res, 209:1-13. https://doi.org/10.1016/j.micres.2018.01.006https://doi.org/10.1016/j.micres.2018.01.006
Sawada K, 1912. Diseases of agricultural products in Japan. Form Agric Rev, 63:10-16.
Sawada K, 1917. Beitrage über formosas-pilze No. 14. Trans Nat Hist Soc Formosa, 31:31-133 (in German).
Shah PR, Varanavasiappan S, Kokiladevi E, et al., 2019. Genhttps://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=47625131&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=47625130&type=1.100666642.20133328ome editing of rice PFT1 gene to study its role in rice sheath blight disease resistance. Int J Curr Microbiol Appl Sci, 8(6):2356-2364. https://doi.org/10.20546/ijcmas.2019.806.281https://doi.org/10.20546/ijcmas.2019.806.281
Singh R, Sunder S, 1997. Foot rot and bakanae of rice: retrospects and prospects. Intl J Trop Plant Dis, 15:153-176.
Singh R, Sunder S, 2012. Foot rot and bakanae of rice: an overview. Rev Plant Pathol, 5:566-604.
Singh R, Kumar P, Laha GS, 2019. Present status of bakanae of rice caused by Fusarium fujikuroi Nirenberg. Indian Phytopathol, 72(4):587-597. https://doi.org/10.1007/s42360-019-00125-whttps://doi.org/10.1007/s42360-019-00125-w
Sunder S, 1998. Vegetative compatibility, biosynthesis of GA3 and virulence of Fusarium moniliforme isolates from bakanae disease of rice. Plant Pathol, 47(6):767-772. https://doi.org/10.1046/j.1365-3059.1998.00303.xhttps://doi.org/10.1046/j.1365-3059.1998.00303.x
Sun SK, Snyder WC, 1981. The bakanae disease of the rice plant. In: Nelson PE, Toussoun TA, Cook RJ (Eds.), Fusarium: Diseases, Biology and Taxonomy. The Pennsylvania University Press, University Park, p.104-113.
Tadasanahaller PS, Bashyal BM, Yadav J, et al., 2023. Identification and characterization of Fusarium fujikuroi pathotypes responsible for an emerging bakanae disease of rice in India. Plants, 12(6):1303. https://doi.org/10.3390/plants12061303https://doi.org/10.3390/plants12061303
Takahashi N, Kitamura H, Kawarada A, et al., 1955. Biochemical studies on “bakanae” fungus: part XXXIV. Isolation of gibberellins and their properties. Part XXXV. Relation between gibberellins, A1, A2 and gibberellic acid. Bull Agric Chem Soc Japan, 19(4):267-281. https://doi.org/10.1080/03758397.1955.10856832https://doi.org/10.1080/03758397.1955.10856832
Takeuchi S, 1972. Climatic effect on seed infection of rice plant with bakanae disease and disinfection with organic mercury compounds. Annu Rep Kansai Plant Prot Soc, 14:14-19 (in Japanese). https://doi.org/10.4165/kapps1958.14.0_14https://doi.org/10.4165/kapps1958.14.0_14
Távora FTPK, Meunier AC, Vernet A, et al., 2022. CRISPR/Cas9-targeted knockout of rice susceptibility genes OsDjA2 and OsERF104 reveals alternative sources of resistance to Pyricularia oryzae. Rice Sci, 29(6):535-544. https://doi.org/10.1016/j.rsci.2022.04.001https://doi.org/10.1016/j.rsci.2022.04.001
Tudzynski B, Hölter K, 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol, 25(3):157-170. https://doi.org/10.1006/fgbi.1998.1095https://doi.org/10.1006/fgbi.1998.1095
Tudzynski B, Mihlan M, Rojas MC, et al., 2003. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem, 278(31):28635-28643. https://doi.org/10.1074/jbc.M301927200https://doi.org/10.1074/jbc.M301927200
Urbaniak C, Dadwal S, Bagramyan K, et al., 2018. Draft genome sequence of a clinical isolate of Fusarium fujikuroi isolated from a male patient with acute myeloid leukemia. Genome Announc, 6(25):e00476-18. https://doi.org/10.1128/genomeA.00476-18https://doi.org/10.1128/genomeA.00476-18
Varughese T, Rios N, Higginbotham S, et al., 2012. Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett, 53(13):1624-1626. https://doi.org/10.1016/j.tetlet.2012.01.076https://doi.org/10.1016/j.tetlet.2012.01.076
Volante A, Tondelli A, Aragona M, et al., 2017. Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice, 10:29. https://doi.org/10.1186/s12284-017-0168-zhttps://doi.org/10.1186/s12284-017-0168-z
Wallner ES, López-Salmerón V, Greb T, 2016. Strigolactone versus gibberellin signaling: reemerging concepts? Planta, 243(6):1339-1350. https://doi.org/10.1007/s00425-016-2478-6https://doi.org/10.1007/s00425-016-2478-6
Wang FJ, Wang CL, Liu PQ, et al., 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE, 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027https://doi.org/10.1371/journal.pone.0154027
Wang Y, Wang YT, Yang RF, et al., 2021. Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(12):1002-1021. https://doi.org/10.1631/jzus.B2100174https://doi.org/10.1631/jzus.B2100174
Watanabe S, Kumakura K, Izawa N, et al., 2007. Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. J Pest Sci, 32(3):222-228. https://doi.org/10.1584/jpestics.G06-35https://doi.org/10.1584/jpestics.G06-35
Wiemann P, Sieber CMK, von Bargen KW, et al., 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog, 9(6):e1003475. https://doi.org/10.1371/journal.ppat.1003475https://doi.org/10.1371/journal.ppat.1003475
Wu JY, Sun YN, Zhou XJ, et al., 2020. A new mutation genotype of K218T in myosin-5 confers resistance to phenamacril in rice bakanae disease in the field. Plant Dis, 104(4):1151-1157. https://doi.org/10.1094/PDIS-05-19-1031-REhttps://doi.org/10.1094/PDIS-05-19-1031-RE
Xue ZL, Zhong S, Shen JH, et al., 2023. Multiple mutations in SDHB and SDHC2 subunits confer resistance to the succinate dehydrogenase inhibitor cyclobutrifluram in Fusarium fujikuroi. J Agric Food Chem, 71(8):3694-3704. https://doi.org/10.1021/acs.jafc.2c08023https://doi.org/10.1021/acs.jafc.2c08023
Yabuta T, 1935. Biochemistry of the “bakanae” fungus of rice. Agric Hortic, 10:17-22.
Yabuta T, Sumiki T, 1938. Communication to the editor. J Agric Chem Soc Japan, 14:1526.
Yan YX, Zhang XY, Tan YY, et al., 2022. Establishment of an artificial inoculation system for the efficient induction of rice bakanae disease. Crop Des, 1(2):100016. https://doi.org/10.1016/j.cropd.2022.100016https://doi.org/10.1016/j.cropd.2022.100016
Yang CD, Guo LB, Li XM, et al., 2006. Analysis of QTLs for resistance to rice bakanae disease. Chin J Rice Sci, 20(6):657-659 (in Chinese). https://doi.org/10.3321/j.issn:1001-7216.2006.06.016https://doi.org/10.3321/j.issn:1001-7216.2006.06.016
Yasmin M, Hossain KS, Bashar MA, 2008. Effects of some angiospermic plant extracts on in vitro vegetative growth of Fusarium moniliforme. Bangladesh J Bot, 37(1):85-88. https://doi.org/10.3329/bjb.v37i1.1569https://doi.org/10.3329/bjb.v37i1.1569
Yu KS, Sun SK, 1976. Ascospore liberation of Gibberella fujikuroi and its contamination of rice grains. Plant Prot Bull Taiwan, 18(4):319-329.
Zainudin NAIM, Razak AA, Salleh B, 2008. Secondary metabolite profiles and mating populations of Fusarium species in section Liseola associated with bakanae disease of rice. Malay J Microbiol, 4(1):6-13. https://doi.org/10.21161/mjm.01708https://doi.org/10.21161/mjm.01708
Zeinab K, Hassan AA, 2019. Antifungal potential and characterization of plant extracts against Fusarium fujikuroi on rice. J Plant Prot Pathol, 10(7):369-376. https://dio.org/10.21608/jppp.2019.53671https://dio.org/10.21608/jppp.2019.53671
Zhang SY, Dai DJ, Wang HD, et al., 2019. One-step loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Fusarium fujikuroi in bakanae disease through NRPS31, an important gene in the gibberellic acid bio-synthesis. Sci Rep, 9:3726. https://doi.org/10.1038/s41598-019-39874-zhttps://doi.org/10.1038/s41598-019-39874-z
Zhang YM, Zheng L, Xie KB, 2023. CRISPR/dCas9-mediated gene silencing in two plant fungal pathogens. mSphere, 8(1):e00594-22. https://doi.org/10.1128/msphere.00594-22https://doi.org/10.1128/msphere.00594-22
Zhu Q, Wu YB, Chen M, et al., 2022. Preinoculation with endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance. J Appl Microbiol, 133(3):1566-1580. https://doi.org/10.1111/jam.15656https://doi.org/10.1111/jam.15656
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution