无数据
Scan for full text
1.Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
2.Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
3.School of Dentistry, University of Sao Paulo, Sao Paulo 05508000, Brazil
4.Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen 52074, Germany
勇佳汶,Sabine GRÖGER,Julia VON BREMEN等.——激光光子生物调节疗法辅助正畸牙齿移动:潜在的作用、挑战与新观点[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):957-973.
Jiawen YONG, Sabine GRÖGER, Julia VON BREMEN, et al. Photobiomodulation therapy assisted orthodontic tooth movement: potential implications, challenges, and new perspectives. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(11):957-973(2023)
勇佳汶,Sabine GRÖGER,Julia VON BREMEN等.——激光光子生物调节疗法辅助正畸牙齿移动:潜在的作用、挑战与新观点[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):957-973. DOI: 10.1631/jzus.B2200706.
Jiawen YONG, Sabine GRÖGER, Julia VON BREMEN, et al. Photobiomodulation therapy assisted orthodontic tooth movement: potential implications, challenges, and new perspectives. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(11):957-973(2023) DOI: 10.1631/jzus.B2200706.
口腔科激光治疗的研究在过去的十年里取得了巨大的进展。激光引发的光子生物调节效应能够调控牙周组织的生物学特性,促进损伤牙周组织更快愈合。光子生物调节疗法(PBMT)作为一种非侵入性治疗方式,有助于减轻正畸治疗引起的疼痛和牙周组织炎症,同时促进牙周组织愈合。此外,PBMT作为一种可通过改善炎症、调节细胞凋亡和抗氧化反应等生物学作用预防正畸导致的炎性牙根吸收(OIIRR)的新方法,受到越来越多研究者的关注。但也有研究表明,PBMT在正畸牙齿移动(OTM)过程中与OIIRR相关性的循证有效性仅为中等等级,这是由于光子在牙周组织中的穿透呈现指数衰减,难以向牙根表面提供足够、适量的能量以达到最佳效果;另一方面,光是否能穿透牙周组织到达牙根表面也是影响激光在OIIRR治疗中的另外一个关键未知因素,光子在牙周组织中的穿透深度和能量分布强度尚不可知。因此,研究者需要克服以上局限性,以开发PBMT在正畸中的应用方法。本综述旨在阐述PBMT在OTM和预防OIIRR中的潜在作用及其相关机制,尤其是在OTM期间的免疫调节作用。
Over the past decade, dramatic progress has been made in dental research areas involving laser therapy. The photobiomodulatory effect of laser light regulates the behavior of periodontal tissues and promotes damaged tissues to heal faster. Additionally, photobiomodulation therapy (PBMT), a non-invasive treatment, when applied in orthodontics, contributes to alleviating pain and reducing inflammation induced by orthodontic forces, along with improving tissue healing processes. Moreover, PBMT is attracting more attention as a possible approach to prevent the incidence of orthodontically induced inflammatory root resorption (OIIRR) during orthodontic treatment (OT) due to its capacity to modulate inflammatory, apoptotic, and anti-antioxidant responses. However, a systematic review revealed that PBMT has only a moderate grade of evidence-based effectiveness during orthodontic tooth movement (OTM) in relation to OIIRR, casting doubt on its beneficial effects. In PBMT-assisted orthodontics, delivering sufficient energy to the tooth root to achieve optimal stimulation is challenging due to the exponential attenuation of light penetration in periodontal tissues. The penetration of light to the root surface is another crucial unknown factor. Both the penetration depth and distribution of light in periodontal tissues are unknown. Thus, advanced approaches specific to orthodontic application of PBMT need to be established to overcome these limitations. This review explores possibilities for improving the application and effectiveness of PBMT during OTM. The aim was to investigate the current evidence related to the underlying mechanisms of action of PBMT on various periodontal tissues and cells, with a special focus on immunomodulatory effects during OTM.
低水平激光治疗激光光子生物调节疗法低强度激光治疗正畸牙齿移动口腔正畸学免疫口腔正畸学
Photobiomodulation therapyLow-level laser therapy (LLLT)Low-intensity laser therapy (LILT)Orthodontic tooth movementOrthodonticsImmunorthodontics
Abidi AH, Mayall RE, Ruan CX, et al., 2021. Immunomodulatory activity seen as a result of photobiomodulation therapy in stimulated primary human fibroblasts. Arch Oral Biol, 121:104968. https://doi.org/10.1016/j.archoralbio.2020.104968https://doi.org/10.1016/j.archoralbio.2020.104968
Ailioaie LM, Litscher G, 2020. Molecular and cellular mechanisms of arthritis in children and adults: new perspectives on applied photobiomodulation. Int J Mol Sci, 21(18):6565. https://doi.org/10.3390/ijms21186565https://doi.org/10.3390/ijms21186565
al Okla N, Bader DMA, Makki L, 2018. Effect of photobiomodulation on maxillary decrowding and root resorption: a randomized clinical trial. APOS Trends Orthod, 8(2):86-91. https://doi.org/10.4103/apos.apos_46_18https://doi.org/10.4103/apos.apos_46_18
Alsarhan J, el Feghali R, Alkhudari T, et al., 2022. Can photobiomodulation support the management of temporomandibular joint pain? Molecular mechanisms and a systematic review of human clinical trials. Photonics, 9(6):420. https://doi.org/10.3390/photonics9060420https://doi.org/10.3390/photonics9060420
Anders JJ, Wu XJ, 2016. Comparison of light penetration of continuous wave 810 nm and superpulsed 904 nm wavelength light in anesthetized rats. Photomed Laser Surg, 34(9):418-424. https://doi.org/10.1089/pho.2016.4137https://doi.org/10.1089/pho.2016.4137
Anicic MS, Perkovic V, Gabrić D, et al., 2021. Effect of a double dose of photobiomodulation therapy on orthodontic pain caused by elastomeric separators. Australas Med J, 13(12):310-316.
Arora D, Yadav G, Tripathi A, et al., 2021. Concepts and applications of LASERs in dentistry: an insight. Int J Oral Health Med Res, 4(5):75-79.
Avci P, Gupta A, Sadasivam M, et al., 2013. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg, 32(1):41-52.
Baricevic M, Mravak-Stipetic M, Majstorovic M, et al., 2011. Oral mucosal lesions during orthodontic treatment. Int J Paediatr Dent, 21(2):96-102. https://doi.org/10.1111/j.1365-263X.2010.01078.xhttps://doi.org/10.1111/j.1365-263X.2010.01078.x
Bernhardt MK, Southard KA, Batterson KD, et al., 2001. The effect of preemptive and/or postoperative ibuprofen therapy for orthodontic pain. Am J Orthod Dentofacial Orthop, 120(1):20-27. https://doi.org/10.1067/mod.2001.115616https://doi.org/10.1067/mod.2001.115616
Blair JM, Zheng Y, Dunstan CR, 2007. RANK ligand. Int J Biochem Cell Biol, 39(6):1077-1081. https://doi.org/10.1016/j.biocel.2006.11.008https://doi.org/10.1016/j.biocel.2006.11.008
Carroll JD, Milward MR, Cooper PR, et al., 2014. Developments in low level light therapy (LLLT) for dentistry. Dent Mater, 30(5):465-475. https://doi.org/10.1016/j.dental.2014.02.006https://doi.org/10.1016/j.dental.2014.02.006
Chan A, Armati P, Moorthy AP, 2012. Pulsed Nd: YAG laser induces pulpal analgesia: a randomized clinical trial. J Dent Res, 91(7 Suppl.):S79-S84. https://doi.org/10.1177/0022034512447947https://doi.org/10.1177/0022034512447947
Chang B, Qiu HX, Zhao HY, et al., 2019. The effects of photobiomodulation on MC3T3-E1 cells via 630 nm and 810 nm light-emitting diode. Med Sci Monit, 25:8744-8752. https://doi.org/10.12659/msm.920396https://doi.org/10.12659/msm.920396
Chen CH, Wang CZ, Wang YH, et al., 2014. Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflamm, 2014:625048. https://doi.org/10.1155/2014/625048https://doi.org/10.1155/2014/625048
Chen QM, Wang YH, Shuai J, 2023. Current status and future prospects of stomatology research. J Zhejiang Univ-Sci B (Biomed & Biotechnol), Online. https://doi.org/10.1631/jzus.B2200702https://doi.org/10.1631/jzus.B2200702
Chow RT, Johnson MI, Lopes-Martins RA, et al., 2009. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet, 374(9705):1897-1908. https://doi.org/10.1016/S0140-6736(09)61522-1https://doi.org/10.1016/S0140-6736(09)61522-1
Chung H, Dai TH, Sharma SK, et al., 2012. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng, 40(2):516-533. https://doi.org/10.1007/s10439-011-0454-7https://doi.org/10.1007/s10439-011-0454-7
Corazza AV, Jorge J, Kurachi C, et al., 2007. Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg, 25(2):102-106. https://doi.org/10.1089/pho.2006.2011https://doi.org/10.1089/pho.2006.2011
Cronshaw M, Parker S, Anagnostaki E, et al., 2020. Photobiomodulation dose parameters in dentistry: a systematic review and meta-analysis. Dent J (Basel), 8(4):114. https://doi.org/10.3390/dj8040114https://doi.org/10.3390/dj8040114
Cruz DR, Kohara EK, Ribeiro MS, et al., 2004. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med, 35(2):117-120. https://doi.org/10.1002/lsm.20076https://doi.org/10.1002/lsm.20076
Cury V, Moretti AIS, Assis L, et al., 2013. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B Biol, 125:164-170. https://doi.org/10.1016/j.jphotobiol.2013.06.004https://doi.org/10.1016/j.jphotobiol.2013.06.004
da Silva Sousa MV, Scanavini MA, Sannomiya EK, et al., 2011. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg, 29(3):191-196. https://doi.org/10.1089/pho.2009.2652https://doi.org/10.1089/pho.2009.2652
Dakshina CK, Hanumanthaiah S, Ramaiah PT, et al., 2019. Efficacy of low-level laser therapy in increasing the rate of orthodontic tooth movement: a randomized control clinical trial. World J Dent, 10(3):177-180. https://doi.org/10.5005/jp-journals-10015-1633https://doi.org/10.5005/jp-journals-10015-1633
de Brito Sousa K, Rodrigues MFSD, de Souza Santos D, et al., 2020. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers. Lasers Med Sci, 35(2):337-343. https://doi.org/10.1007/s10103-019-02817-1https://doi.org/10.1007/s10103-019-02817-1
de Freitas LF, Hamblin MR, 2016. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron, 22(3):348-364. https://doi.org/10.1109/JSTQE.2016.2561201https://doi.org/10.1109/JSTQE.2016.2561201
Dillenburg CS, Almeida LO, Martins MD, et al., 2014. Laser phototherapy triggers the production of reactive oxygen species in oral epithelial cells without inducing DNA damage. J Biomed Opt, 19(4):048002. https://doi.org/10.1117/1.Jbo.19.4.048002https://doi.org/10.1117/1.Jbo.19.4.048002
Dimmeler S, Lottspeich F, Brüne B, 1992. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem, 267(24):16771-16774. https://doi.org/10.1016/S0021-9258(18)41847-9https://doi.org/10.1016/S0021-9258(18)41847-9
Domínguez A, Velásquez SA, 2021. Acceleration of dental movement by photobiomodulation: how does it happen? Photobiomodul Photomed Laser Surg, 39(6):379-380. https://doi.org/10.1089/photob.2020.4969https://doi.org/10.1089/photob.2020.4969
Domínguez A, Ballesteros RE, Viáfara JH, et al., 2013. Effect of low level laser therapy on dental pulp during orthodontic movement. World J Methodol, 3(2):19-26. https://doi.org/10.5662/wjm.v3.i2.19https://doi.org/10.5662/wjm.v3.i2.19
Domínguez Camacho A, Bravo Reyes M, Velasquez Cujar SA, 2020a. A systematic review of the effective laser wavelength range in delivering photobiomodulation for pain relief in active orthodontic treatment. Int Orthod, 18(4):684-695. https://doi.org/10.1016/j.ortho.2020.08.008https://doi.org/10.1016/j.ortho.2020.08.008
Domínguez Camacho A, Montoya Guzmán D, Velásquez Cujar SA, 2020b. Effective wavelength range in photobiomodulation for tooth movement acceleration in orthodontics: a systematic review. Photobiomodul Photomed Laser Surg, 38(10):581-590. https://doi.org/10.1089/photob.2020.4814https://doi.org/10.1089/photob.2020.4814
Dompe C, Moncrieff L, Matys J, et al., 2020. Photobiomodulation—underlying mechanism and clinical applications. J Clin Med, 9(6):1724. https://doi.org/10.3390/jcm9061724https://doi.org/10.3390/jcm9061724
Doshi-Mehta G, Bhad-Patil WA, 2012. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop, 141(3):289-297. https://doi.org/10.1016/j.ajodo.2011.09.009https://doi.org/10.1016/j.ajodo.2011.09.009
Drapier JC, Hirling H, Wietzerbin J, et al., 1993. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J, 12(9):3643-3649. https://doi.org/10.1002/j.1460-2075.1993.tb06038.xhttps://doi.org/10.1002/j.1460-2075.1993.tb06038.x
Drapier JC, Hibbs JB Jr, 1996. Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. In: Packer L (Ed.), Methods in Enzymology, vol. 269. Academic Press, NY, p.26-36. https://doi.org/10.1016/s0076-6879(96)69006-5https://doi.org/10.1016/s0076-6879(96)69006-5
Eells JT, Henry MM, Summerfelt P, et al., 2003. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci USA, 100(6):3439-3444. https://doi.org/10.1073/pnas.0534746100https://doi.org/10.1073/pnas.0534746100
Eells JT, Wong-Riley MTT, VerHoeve J, et al., 2004. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion, 4(5-6):559-567. https://doi.org/10.1016/j.mito.2004.07.033https://doi.org/10.1016/j.mito.2004.07.033
Eid FY, El-Kenany WA, Mowafy MI, et al., 2022. The influence of two photobiomodulation protocols on orthodontically induced inflammatory root resorption (a randomized controlled clinical trial). BMC Oral Health, 22:221. https://doi.org/10.1186/s12903-022-02251-whttps://doi.org/10.1186/s12903-022-02251-w
Ekizer A, Türker G, Uysal T, et al., 2016. Light emitting diode mediated photobiomodulation therapy improves orthodontic tooth movement and miniscrew stability: a randomized controlled clinical trial. Lasers Surg Med, 48(10):936-943. https://doi.org/10.1002/lsm.22516https://doi.org/10.1002/lsm.22516
Enaia M, Bock N, Ruf S, 2011. White-spot lesions during multibracket appliance treatment: a challenge for clinical excellence. Am J Orthod Dentofacial Orthop, 140(1):e17-e24. https://doi.org/10.1016/j.ajodo.2010.12.016https://doi.org/10.1016/j.ajodo.2010.12.016
Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, et al., 2014. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci, 29(2):559-564. https://doi.org/10.1007/s10103-012-1258-1https://doi.org/10.1007/s10103-012-1258-1
Faria LV, Andrade IN, dos Anjos LMJ, et al., 2020. Photobiomodulation can prevent apoptosis in cells from mouse periodontal ligament. Lasers Med Sci, 35(8):1841-1848. https://doi.org/10.1007/s10103-020-03044-9https://doi.org/10.1007/s10103-020-03044-9
Fernandes MRU, Suzuki SS, Suzuki H, et al., 2019. Photobiomodulation increases intrusion tooth movement and modulates IL-6, IL-8 and IL-1β expression during orthodontic
ally bone remodeling. J Biophotonics, 12(10):e201800311. https://doi.org/10.1002/jbio.201800311https://doi.org/10.1002/jbio.201800311
Fujimoto K, Kiyosaki T, Mitsui N, et al., 2010. Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med, 42(6):519-526. https://doi.org/10.1002/lsm.20880https://doi.org/10.1002/lsm.20880
Fujita S, Yamaguchi M, Utsunomiya T, et al., 2008. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res, 11(3):143-155. https://doi.org/10.1111/j.1601-6343.2008.00423.xhttps://doi.org/10.1111/j.1601-6343.2008.00423.x
Gama SKC, Habib FAL, de Carvalho JS, et al., 2010. Tooth movement after infrared laser phototherapy: clinical study in rodents. Photomed Laser Surg, 28(S2):S-79-S-83. https://doi.org/10.1089/pho.2009.2618https://doi.org/10.1089/pho.2009.2618
Genc G, Kocadereli İ, Tasar F, et al., 2013. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci, 28(1):41-47. https://doi.org/10.1007/s10103-012-1059-6https://doi.org/10.1007/s10103-012-1059-6
Gholami L, Hendi SS, Saidijam M, et al., 2022. Near-infrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells. Lasers Med Sci, 37(1):449-459. https://doi.org/10.1007/s10103-021-03282-5https://doi.org/10.1007/s10103-021-03282-5
Goulart CS, Nouer PRA, Mouramartins L, et al., 2006. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg, 24(2):192-196. https://doi.org/10.1089/pho.2006.24.192https://doi.org/10.1089/pho.2006.24.192
Goymen M, Gulec A, 2020. Effect of photobiomodulation therapies on the root resorption associated with orthodontic forces: a pilot study using micro computed tomography. Clin Oral Invest, 24(4):1431-1438. https://doi.org/10.1007/s00784-019-03155-whttps://doi.org/10.1007/s00784-019-03155-w
Hamblin MR, 2016. Photobiomodulation or low-level laser therapy. J Biophoton, 9(11-12):1122-1124. https://doi.org/10.1002/jbio.201670113https://doi.org/10.1002/jbio.201670113
Hamblin MR, 2017. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys, 4(3):337-361. https://doi.org/10.3934/biophy.2017.3.337https://doi.org/10.3934/biophy.2017.3.337
Hamblin MR, 2018. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol, 94(2):199-212. https://doi.org/10.1111/php.12864https://doi.org/10.1111/php.12864
Hamblin MR, Carroll JD, Arany P, 2015. Mechanisms for Low-Light Therapy X. SPIE ‒ the International Society for Optics and Photonics, San Francisco, California, USA.
Harazaki M, Takahashi H, Ito A, et al., 1998. Soft laser irradiation induced pain reduction in orthodontic treatment. Bull Tokyo Dent Coll, 39(2):95-101.
Hashimoto F, Kobayashi Y, Mataki S, et al., 2001. Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod, 23(5):535-545. https://doi.org/10.1093/ejo/23.5.535https://doi.org/10.1093/ejo/23.5.535
Henderson TA, Morries LD, 2015. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat, 11:2191-2208. https://doi.org/10.2147/NDT.S78182https://doi.org/10.2147/NDT.S78182
Huang YY, Sharma SK, Carroll J, et al., 2011. Biphasic dose response in low level light therapy ‒ an update. Dose Response, 9(4):602-618. https://doi.org/10.2203/dose-response.11-009.Hamblinhttps://doi.org/10.2203/dose-response.11-009.Hamblin
Katagiri T, Takahashi N, 2002. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis, 8(3):147-159. https://doi.org/10.1034/j.1601-0825.2002.01829.xhttps://doi.org/10.1034/j.1601-0825.2002.01829.x
Kate RJ, Rubatt S, Enwemeka CS, et al., 2018. Optimal laser phototherapy parameters for pain relief. Photomed Laser Surg, 36(7):354-362. https://doi.org/10.1089/pho.2017.4399https://doi.org/10.1089/pho.2017.4399
Kau CH, Kantarci A, Shaughnessy T, et al., 2013. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod, 14:30. https://doi.org/10.1186/2196-1042-14-30https://doi.org/10.1186/2196-1042-14-30
Kawakami M, Takano-Yamamoto T, 2004. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab, 22(6):541-546. https://doi.org/10.1007/s00774-004-0521-3https://doi.org/10.1007/s00774-004-0521-3
Kawasaki K, Shimizu N, 2000. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med, 26(3):282-291. https://doi.org/10.1002/(sici)1096-9101(2000)26:3<282::aid-lsm6>3.0.co;2-xhttps://doi.org/10.1002/(sici)1096-9101(2000)26:3<282::aid-lsm6>3.0.co;2-x
Keijzer M, Jacques SL, Prahl SA, et al., 1989. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Lasers Surg Med, 9(2):148-154. https://doi.org/10.1002/lsm.1900090210https://doi.org/10.1002/lsm.1900090210
Khaw CMA, Dalci O, Foley M, et al., 2018. Physical properties of root cementum: part 27. Effect of low-level laser therapy on the repair of orthodontically induced inflammatory root resorption: a double-blind, split-mouth, randomized controlled clinical trial. Am J Orthod Dentofacial Orthop, 154(3):326-336. https://doi.org/10.1016/j.ajodo.2018.04.022https://doi.org/10.1016/j.ajodo.2018.04.022
Kim SJ, Moon SU, Kang SG, et al., 2009. Effects of low-level laser therapy after Corticision on tooth movement and paradental remodeling. Lasers Surg Med, 41(7):524-533. https://doi.org/10.1002/lsm.20792https://doi.org/10.1002/lsm.20792
Kim YD, Kim SS, Kim TG, et al., 2007. Effect of low level laser treatment during tooth movement-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Laser Phys Lett, 4(8):616-623. https://doi.org/10.1002/lapl.200710032https://doi.org/10.1002/lapl.200710032
Labonte AC, Tosello-Trampont AC, Hahn YS, 2014. The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells, 37(4):275-285. https://doi.org/10.14348/molcells.2014.2374https://doi.org/10.14348/molcells.2014.2374
Lanzafame RJ, Stadler I, Kurtz AF, et al., 2007. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med, 39(6):534-542. https://doi.org/10.1002/lsm.20519https://doi.org/10.1002/lsm.20519
Law SLS, Southard KA, Law AS, et al., 2000. An evaluation of preoperative ibuprofen for treatment of pain associated with orthodontic separator placement. Am J Orthod Dentofacial Orthop, 118(6):629-635. https://doi.org/10.1067/mod.2000.110638https://doi.org/10.1067/mod.2000.110638
Lee JH, Chiang MH, Chen PH, et al., 2018. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci, 33(3):469-477. https://doi.org/10.1007/s10103-017-2376-6https://doi.org/10.1007/s10103-017-2376-6
Lepoivre M, Fieschi F, Coves J, et al., 1991. Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun, 179(1):442-448. https://doi.org/10.1016/0006-291x(91)91390-xhttps://doi.org/10.1016/0006-291x(91)91390-x
Liao WT, Hung CH, Liang SS, et al., 2021. Anti-inflammatory effects induced by near-infrared light irradiation through M2 macrophage polarization. J Invest Dermatol, 141(8):2056-2066.e10. https://doi.org/10.1016/j.jid.2020.11.035https://doi.org/10.1016/j.jid.2020.11.035
Lim HM, Lew KKK, Tay DKL, 1995. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop, 108(6):614-622. https://doi.org/10.1016/s0889-5406(95)70007-2https://doi.org/10.1016/s0889-5406(95)70007-2
Limpanichkul W, Godfrey K, Srisuk N, et al., 2006. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res, 9(1):38-43. https://doi.org/10.1111/j.1601-6343.2006.00338.xhttps://doi.org/10.1111/j.1601-6343.2006.00338.x
Marcos RL, Leal Junior ECP, de Moura Messias F, et al., 2011. Infrared (810 nm) low-level laser therapy in rat achilles tendinitis: a consistent alternative to drugs. Photochem Photobiol, 87(6):1447-1452. https://doi.org/10.1111/j.1751-1097.2011.00999.xhttps://doi.org/10.1111/j.1751-1097.2011.00999.x
Martinez FO, Helming L, Gordon S, 2009. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 27:451-483. https://doi.org/10.1146/annurev.immunol.021908.132532https://doi.org/10.1146/annurev.immunol.021908.132532
Masha RT, Houreld NN, Abrahamse H, 2013. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg, 31(2):47-53. https://doi.org/10.1089/pho.2012.3369https://doi.org/10.1089/pho.2012.3369
Mester E, Nagylucskay S, Waidelich W, et al., 1978. Effects of direct laser radiation on human lymphocytes. Arch Dermatol Res, 263(3):241-245 (in German). https://doi.org/10.1007/BF00446940https://doi.org/10.1007/BF00446940
MgGuff PE, JrDeterling RA, Gottlieb LS, 1965. Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med, 273(9):490-492. https://doi.org/10.1056/NEJM196508262730906https://doi.org/10.1056/NEJM196508262730906
Mirhashemi A, Rasouli S, Shahi S, et al., 2021. Efficacy of photobiomodulation therapy for orthodontic pain control following the placement of elastomeric separators: a randomized clinical trial. J Lasers Med Sci, 12:e8. https://doi.org/10.34172/jlms.2021.08https://doi.org/10.34172/jlms.2021.08
Mistry D, Dalci O, Papageorgiou SN, et al., 2020. The effects of a clinically feasible application of low-level laser therapy on the rate of orthodontic tooth movement: a triple-blind, split-mouth, randomized controlled trial. Am J Orthod Dentofacial Orthop, 157(4):444-453. https://doi.org/10.1016/j.ajodo.2019.12.005https://doi.org/10.1016/j.ajodo.2019.12.005
Mizutani K, Musya Y, Wakae K, et al., 2004. A clinical study on serum prostaglandin E2 with low-level laser therapy. Photomed Laser Surg, 22(6):537-539. https://doi.org/10.1089/pho.2004.22.537https://doi.org/10.1089/pho.2004.22.537
Moriyama Y, Nguyen J, Akens M, et al., 2009. In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med, 41(3):227-231. https://doi.org/10.1002/lsm.20745https://doi.org/10.1002/lsm.20745
Murad F, 2004. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep, 24(4-5):452-474. https://doi.org/10.1007/s10540-005-2741-8https://doi.org/10.1007/s10540-005-2741-8
Mylona V, Anagnostaki E, Chiniforush N, et al., 2022. Photobiomodulation effects on periodontal ligament stem cells: a systematic review of in vitro studies. Curr Stem Cell Res Ther, Online. https://doi.org/10.2174/1574888X17666220527090321https://doi.org/10.2174/1574888X17666220527090321
Na S, Truongvo T, Jiang FF, et al., 2018. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. J Biomed Opt, 23(7):075008. https://doi.org/10.1117/1.Jbo.23.7.075008https://doi.org/10.1117/1.Jbo.23.7.075008
Nayyer N, Tripathi T, Ganesh G, et al., 2022. Impact of photobiomodulation on external root resorption during orthodontic tooth movement in humans ‒ a systematic review and meta-analysis. J Oral Biol Craniofac Res, 12(4):469-480. https://doi.org/10.1016/j.jobcr.2022.05.014https://doi.org/10.1016/j.jobcr.2022.05.014
Ng D, Chan AK, Papadopoulou AK, et al., 2018. The effect of low-level laser therapy on orthodontically induced root resorption: a pilot double blind randomized controlled trial. Eur J Orthod, 40(3):317-325. https://doi.org/10.1093/ejo/cjx065https://doi.org/10.1093/ejo/cjx065
Nimeri G, Kau CH, Abou-Kheir NS, et al., 2013. Acceleration of tooth movement during orthodontic treatment ‒ a frontier in orthodontics. Prog Orthod, 14:42. https://doi.org/10.1186/2196-1042-14-42https://doi.org/10.1186/2196-1042-14-42
Nimeri G, Kau CH, Corona R, et al., 2014. The effect of photobiomodulation on root resorption during orthodontic treatment. Clin Cosmet Investig Dent, 6:1-8. https://doi.org/10.2147/CCIDE.S49489https://doi.org/10.2147/CCIDE.S49489
Osipov AN, Machneva TV, Buravlev EA, et al., 2018. Effects of laser radiation on mitochondria and mitochondrial proteins subjected to nitric oxide. Front Med, 5:112. https://doi.org/10.3389/fmed.2018.00112https://doi.org/10.3389/fmed.2018.00112
Ozawa Y, Shimizu N, Kariya G, et al., 1998. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone, 22(4):347-354. https://doi.org/10.1016/s8756-3282(97)00294-9https://doi.org/10.1016/s8756-3282(97)00294-9
Panhoca VH, Lizarelli RDF, Nunez SC, et al., 2015. Comparative clinical study of light analgesic effect on temporomandibular disorder (TMD) using red and infrared led therapy. Lasers Med Sci, 30(2):815-822. https://doi.org/10.1007/s10103-013-1444-9https://doi.org/10.1007/s10103-013-1444-9
Pellicioli ACA, Martins MD, Dillenburg CS, et al., 2014. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt, 19(2):028002. https://doi.org/10.1117/1.Jbo.19.2.028002https://doi.org/10.1117/1.Jbo.19.2.028002
Popa-Wagner A, Mitran S, Sivanesan S, et al., 2013. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev, 2013:963520. https://doi.org/10.1155/2013/963520https://doi.org/10.1155/2013/963520
Pruitt T, Carter C, Wang XL, et al., 2022. Photobiomodulation at different wavelengths boosts mitochondrial redox metabolism and hemoglobin oxygenation: lasers vs. light-emitting diodes in vivo. Metabolites, 12(2):103. https://doi.org/10.3390/metabo12020103https://doi.org/10.3390/metabo12020103
Ryu JJ, Yoo S, Kim KY, et al., 2010. Laser modulation of heat and capsaicin receptor TRPV1 leads to thermal antinociception. J Dent Res, 89(12):1455-1460. https://doi.org/10.1177/0022034510381394https://doi.org/10.1177/0022034510381394
Saito S, Shimizu N, 1997. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop, 111(5):525-532. https://doi.org/10.1016/s0889-5406(97)70152-5https://doi.org/10.1016/s0889-5406(97)70152-5
Salehpour F, Mahmoudi J, Kamari F, et al., 2018. Brain photobiomodulation therapy: a narrative review. Mol Neurobiol, 55(8):6601-6636. https://doi.org/10.1007/s12035-017-0852-4https://doi.org/10.1007/s12035-017-0852-4
Saygun I, Karacay S, Serdar M, et al., 2008. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci, 23(2):211-215. https://doi.org/10.1007/s10103-007-0477-3https://doi.org/10.1007/s10103-007-0477-3
Seifi M, Eslami B, Saffar AS, 2003. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod, 25(2):199-204. https://doi.org/10.1093/ejo/25.2.199https://doi.org/10.1093/ejo/25.2.199
Seifi M, Shafeei HA, Daneshdoost S, et al., 2007. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci, 22(4):261-264. https://doi.org/10.1007/s10103-007-0447-9https://doi.org/10.1007/s10103-007-0447-9
Seo BM, Miura M, Gronthos S, et al., 2004. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429):149-155. https://doi.org/10.1016/s0140-6736(04)16627-0https://doi.org/10.1016/s0140-6736(04)16627-0
Sfondrini MF, Vitale M, Pinheiro ALB, et al., 2020. Photobiomodulation and pain reduction in patients requiring orthodontic band application: randomized clinical trial. Biomed Res Int, 2020:7460938. https://doi.org/10.1155/2020/7460938https://doi.org/10.1155/2020/7460938
Shaughnessy T, Kantarci A, Kau CH, et al., 2016. Intraoral photobiomodulation-induced orthodontic tooth alignment: a preliminary study. BMC Oral Health, 16:3. https://doi.org/10.1186/s12903-015-0159-7https://doi.org/10.1186/s12903-015-0159-7
Stamler JS, Simon DI, Osborne JA, et al., 1992. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA, 89(1):444-448. https://doi.org/10.1073/pnas.89.1.444https://doi.org/10.1073/pnas.89.1.444
Su CT, Chen CM, Chen CC, et al., 2020. Dose analysis of photobiomodulation therapy in stomatology. Evid Based Complement Alternat Med, 2020:8145616. https://doi.org/10.1155/2020/8145616https://doi.org/10.1155/2020/8145616
Svelto O, Longhi S, Valle G, et al., 2007. Lasers and coherent light sources. In: Träger F (Ed.), Springer Handbook of Lasers and Optics. Springer, New York, p.583-936. https://doi.org/10.1007/978-0-387-30420-5_11https://doi.org/10.1007/978-0-387-30420-5_11
Szymanska J, Goralczyk K, Klawe JJ, et al., 2013. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol, 64(3):387-391.
Talic NF, 2011. Adverse effects of orthodontic treatment: a clinical perspective. Saudi Dent J, 23(2):55-59. https://doi.org/10.1016/j.sdentj.2011.01.003https://doi.org/10.1016/j.sdentj.2011.01.003
Topolski F, Moro A, Correr GM, et al., 2018. Optimal management of orthodontic pain. J Pain Res, 11:589-598. https://doi.org/10.2147/JPR.S127945https://doi.org/10.2147/JPR.S127945
Tunér J, Hosseinpour S, Fekrazad R, 2019. Photobiomodulation in temporomandibular disorders. Photobiomodul Photomed Laser Surg, 37(12):826-836. https://doi.org/10.1089/photob.2019.4705https://doi.org/10.1089/photob.2019.4705
Uribe F, Padala S, Allareddy V, et al., 2014. Patients’, parents’, and orthodontists’ perceptions of the need for and costs of additional procedures to reduce treatment time. Am J Orthod Dentofacial Orthop, 145(4 Suppl):S65-S73. https://doi.org/10.1016/j.ajodo.2013.12.015https://doi.org/10.1016/j.ajodo.2013.12.015
Viegas VN, Abreu MER, Viezzer C, et al., 2007. Effect of low-level laser therapy on inflammatory reactions during wound healing: comparison with meloxicam. Photomed Laser Surg, 25(6):467-473. https://doi.org/10.1089/pho.2007.1098https://doi.org/10.1089/pho.2007.1098
von Leden RE, Cooney SJ, Ferrara TM, et al., 2013. 808 nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med, 45(4):253-263. https://doi.org/10.1002/lsm.22133https://doi.org/10.1002/lsm.22133
Wagner VP, Meurer L, Martins MAT, et al., 2013. Influence of different energy densities of laser phototherapy on oral wound healing. J Biomed Opt, 18(12):128002. https://doi.org/10.1117/1.JBO.18.12.128002https://doi.org/10.1117/1.JBO.18.12.128002
Wagner VP, Curra M, Webber LP, et al., 2016. Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci, 31(4):665-671. https://doi.org/10.1007/s10103-016-1904-0https://doi.org/10.1007/s10103-016-1904-0
Yamaguchi M, Fujita S, Yoshida T, et al., 2007. Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthodontic Waves, 66(4):139-148. https://doi.org/10.1016/j.odw.2007.09.002https://doi.org/10.1016/j.odw.2007.09.002
Yamaguchi M, Hayashi M, Fujita S, et al., 2010. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod, 32(2):131-139. https://doi.org/10.1093/ejo/cjp078https://doi.org/10.1093/ejo/cjp078
Yan WX, Chow R, Armati PJ, 2011. Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: implications for laser-induced analgesia. J Peripher Nerv Syst, 16(2):130-135. https://doi.org/10.1111/j.1529-8027.2011.00337.xhttps://doi.org/10.1111/j.1529-8027.2011.00337.x
Yassaei S, Fekrazad R, Shahraki N, 2013. Effect of low level laser therapy on orthodontic tooth movement: a review article. J Dent (Tehran), 10(3):264-272.
Yavagal CM, Matondkar SP, Yavagal PC, 2021. Efficacy of laser photobiomodulation in accelerating orthodontic tooth movement in children: a systematic review with meta-analysis. Int J Clin Pediatr Dent, 14(S1):S91-S97. https://doi.org/10.5005/jp-journals-10005-1964https://doi.org/10.5005/jp-journals-10005-1964
Yong JW, von Bremen J, Ruiz-Heiland G, et al., 2021a. Adiponectin as well as compressive forces regulate in vitro β-catenin expression on cementoblasts via mitogen-activated protein kinase signaling activation. Front Cell Dev Biol, 9:645005. https://doi.org/10.3389/fcell.2021.645005https://doi.org/10.3389/fcell.2021.645005
Yong JW, von Bremen J, Groeger S, et al., 2021b. Hypoxia-inducible factor 1-alpha acts as a bridge factor for crosstalk between ERK1/2 and caspases in hypoxia-induced apoptosis of cementoblasts. J Cell Mol Med, 25(20):9710-9723. https://doi.org/10.1111/jcmm.16920https://doi.org/10.1111/jcmm.16920
Yong JW, Gröger S, Meyle J, et al., 2022a. Immunorthodontics: role of HIF-1α in the regulation of (peptidoglycan-induced) PD-L1 expression in cementoblasts under compressive force. Int J Mol Sci, 23(13):6977. https://doi.org/10.3390/ijms23136977https://doi.org/10.3390/ijms23136977
Yong JW, Groeger S, von Bremen J, et al., 2022b. Ciliary neurotrophic factor (CNTF) and its receptors signal regulate cementoblasts apoptosis through a mechanism of ERK1/2 and caspases signaling. Int J Mol Sci, 23(15):8335. https://doi.org/10.3390/ijms23158335https://doi.org/10.3390/ijms23158335
Yong JW, Gröger S, von Bremen J, et al., 2022c. Ciliary neurotrophic factor (CNTF) inhibits in vitro cementoblast mineralization and induces autophagy, in part by STAT3/ERK commitment. Int J Mol Sci, 23(16):9311. https://doi.org/10.3390/ijms23169311https://doi.org/10.3390/ijms23169311
Yong JW, Gröger S, von Bremen J, et al., 2022d. Immuno
rthodontics: PD-L1, a novel immunomodulator in cementoblasts, is regulated by HIF-1α under hypoxia. Cells, 11(15):2350. https://doi.org/10.3390/cells11152350https://doi.org/10.3390/cells11152350
Yong JW, Groeger S, Meyle J, et al., 2022e. MAPK and β-catenin signaling: implication and interplay in orthodontic tooth movement. Front Biosci (Landmark Ed), 27(2):54. https://doi.org/10.31083/j.fbl2702054https://doi.org/10.31083/j.fbl2702054
Yong JW, Li PP, Mizrahi IK, et al., 2022f. Effect of low-level Er: YAG (2940 nm) laser irradiation on the photobiomodulation of mitogen-activated protein kinase cellular signaling pathway of rodent cementoblasts. Front Biosci (Landmark Ed), 27(2):62. https://doi.org/10.31083/j.fbl2702062https://doi.org/10.31083/j.fbl2702062
Yong JW, Groeger SE, Ruf S, et al., 2023. Influence of leptin and compression in GAS-6 mediated homeostasis of periodontal ligament cell. Oral Dis, 29(3):1172-1183. https://doi.org/10.1111/odi.14092https://doi.org/10.1111/odi.14092
Yoshida T, Yamaguchi M, Utsunomiya T, et al., 2009. Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofac Res, 12(4):289-298. https://doi.org/10.1111/j.1601-6343.2009.01464.xhttps://doi.org/10.1111/j.1601-6343.2009.01464.x
Youssef M, Ashkar S, Hamade E, et al., 2008. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci, 23(1):27-33. https://doi.org/10.1007/s10103-007-0449-7https://doi.org/10.1007/s10103-007-0449-7
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution