无数据
Scan for full text
1.Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
2.School of Basic Medical Sciences, Anhui Medical University, Hefei 230031, China
3.Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
Yating FANG, Man CHEN, Bofeng ZHU. Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(9):839-852(2023)
Yating FANG, Man CHEN, Bofeng ZHU. Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(9):839-852(2023) DOI: 10.1631/jzus.B2200555.
体液组织来源的鉴定可为刑事案件的侦查提供线索和证据。为了建立一种高效的法医学体液鉴定方法,本研究选取了8个新的体液特异性DNA甲基化标志物,并基于这些标志物构建了可用于5种常见体液(静脉血、唾液、经血、阴道液和精液)鉴定的多重单碱基延伸反应(SNaPshot)体系。结果表明,该系统具有良好的物种特异性和灵敏度,可用于混合生物样本的鉴定。同时,本研究利用前期研究数据构建了一个人工体液预测模型和两个分别基于支持向量机和随机森林算法的机器学习预测模型,并利用本研究获得的检测数据(,n,=95)对这些预测模型进行了测试。基于研究者经验建立的人工预测模型的准确率为95.79%,支持向量机预测模型对除唾液(96.84%)外的所有体液的预测准确率均为100.00%,随机森林预测模型对5种体液的预测准确率均为100.00%。综上所述,我们所构建的SNaPshot系统和随机森林预测模型能够实现体液组织来源的准确鉴定。
The identification of tissue origin of body fluid can provide clues and evidence for criminal case investigations. To establish an efficient method for identifying body fluid in forensic cases, eight novel body fluid-specific DNA methylation markers were selected in this study, and a multiplex single,base extension reaction (SNaPshot) system for these markers was constructed for the identification of five common body fluids (venous blood, saliva, menstrual blood, vaginal fluid, and semen). The results indicated that the in-house system showed good species specificity, sensitivity, and ability to identify mixed biological samples. At the same time, an artificial body fluid prediction model and two machine learning prediction models based on the support vector machine (SVM) and random forest (RF) algorithms were constructed using previous research data, and these models were validated using the detection data obtained in this study (,n,=95). The accuracy of the prediction model based on experience was 95.79%; the prediction accuracy of the SVM prediction model was 100.00% for four kinds of body fluids except saliva (96.84%); and the prediction accuracy of the RF prediction model was 100.00% for all five kinds of body fluids. In conclusion, the in-house SNaPshot system and RF prediction model could achieve accurate tissue origin identification of body fluids.
DNA甲基化体液法医鉴定单碱基延伸反应(SNaPshot)机器学习
DNA methylationBody fluidForensic identificationSingle base extension reaction (SNaPshot)Machine learning
Alderden J, Pepper GA, Wilson A, et al., 2018. Predicting pressure injury in critical care patients: a machine-learning model. Am J Crit Care, 27(6):461-468. https://doi.org/10.4037/ajcc2018525https://doi.org/10.4037/ajcc2018525
Benn Torres J, Martucci V, Aldrich MC, et al., 2019. Analysis of biogeographic ancestry reveals complex genetic histories for indigenous communities of St. Vincent and Trinidad. Am J Phys Anthropol, 169(3):482-497. https://doi.org/10.1002/ajpa.23859https://doi.org/10.1002/ajpa.23859
Bi QF, Goodman KE, Kaminsky J, et al., 2019. What is machine learning? A primer for the epidemiologist. Am J Epidemiol, 188(12):2222-2239. https://doi.org/10.1093/aje/kwz189https://doi.org/10.1093/aje/kwz189
Che DS, Liu Q, Rasheed K, et al., 2011. Decision tree and ensemble learning algorithms with their applications in bioinformatics. In: Arabnia HR, Tran QN (Eds.), Software Tools and Algorithms for Biological Systems. Springer, New York, p.191-199. https://doi.org/10.1007/978-1-4419-7046-6_19https://doi.org/10.1007/978-1-4419-7046-6_19
Chen CJ, Chen H, Zhang Y, et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13(8):1194-1202. https://doi.org/10.1016/j.molp.2020.06.009https://doi.org/10.1016/j.molp.2020.06.009
Choung CM, Lee JW, Park JH, et al., 2021. A forensic case study for body fluid identification using DNA methylation analysis. Leg Med, 51:101872. https://doi.org/10.1016/j.legalmed.2021.101872https://doi.org/10.1016/j.legalmed.2021.101872
Chowdhury AR, Chatterjee T, Banerjee S, 2019. A random forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Comput, 57(1):193-203. https://doi.org/10.1007/s11517-018-1878-0https://doi.org/10.1007/s11517-018-1878-0
Deo RC, 2015. Machine learning in medicine. Circulation, 132(20):1920-1930. https://doi.org/10.1161/circulationaha.115.001593https://doi.org/10.1161/circulationaha.115.001593
de Raadt A, Warrens MJ, Bosker RJ, et al., 2019. Kappa coefficients for missing data. Educ Psychol Meas, 79(3):558-576. https://doi.org/10.1177/0013164418823249https://doi.org/10.1177/0013164418823249
Dias HC, Cordeiro C, Pereira J, et al., 2020. DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay. Forensic Sci Int, 311:110267. https://doi.org/10.1016/j.forsciint.2020.110267https://doi.org/10.1016/j.forsciint.2020.110267
Engstrand RD, Moeller G, 1967. Confusion matrix analysis for form perception. Hum Factors, 9(5):439-446. https://doi.org/10.1177/001872086700900507https://doi.org/10.1177/001872086700900507
Forat S, Huettel B, Reinhardt R, et al., 2016. Methylation markers for the identification of body fluids and tissues from forensic trace evidence. PLoS ONE, 11(2):e0147973. https://doi.org/10.1371/journal.pone.0147973https://doi.org/10.1371/journal.pone.0147973
Haddrill PR, 2021. Developments in forensic DNA analysis. Emerg Top Life Sci, 5(3):381-393. https://doi.org/10.1042/etls20200304https://doi.org/10.1042/etls20200304
Hao T, Guo JL, Liu JD, et al., 2021. Predicting human age by detecting DNA methylation status in hair. Electrophoresis, 42(11):1255-1261. https://doi.org/10.1002/elps.202000349https://doi.org/10.1002/elps.202000349
Huang HZ, Liu XZ, Cheng JB, et al., 2022. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. J Forensic Sci, 67(1):136-148. https://doi.org/10.1111/1556-4029.14872https://doi.org/10.1111/1556-4029.14872
Huang SJ, Cai NG, Pacheco PP, et al., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 15(1):41-51. https://doi.org/10.21873/cgp.20063https://doi.org/10.21873/cgp.20063
Kader F, Ghai M, Olaniran AO, 2020. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med, 134(1):1-20. https://doi.org/10.1007/s00414-019-02181-3https://doi.org/10.1007/s00414-019-02181-3
Lee HY, An JH, Jung SE, et al., 2015. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet, 17:17-24. https://doi.org/10.1016/j.fsigen.2015.03.002https://doi.org/10.1016/j.fsigen.2015.03.002
Lee JE, Lee JM, Naue J, et al., 2022. A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet, 57:102656. https://doi.org/10.1016/j.fsigen.2021.102656https://doi.org/10.1016/j.fsigen.2021.102656
Martin NC, Clayson NJ, Scrimger DG, 2006. The sensitivity and specificity of Red-Starch paper for the detection of saliva. Sci Justice, 46(2):97-105. https://doi.org/10.1016/s1355-0306(06)71580-5https://doi.org/10.1016/s1355-0306(06)71580-5
Mattei AL, Bailly N, Meissner A, 2022. DNA methylation: a historical perspective. Trends Genet, 38(7):676-707. https://doi.org/10.1016/j.tig.2022.03.010https://doi.org/10.1016/j.tig.2022.03.010
Pan C, Yi SH, Xiao C, et al., 2020. The evaluation of seven age-related CpGs for forensic purpose in blood from Chinese Han population. Forensic Sci Int Genet, 46:102251. https://doi.org/10.1016/j.fsigen.2020.102251https://doi.org/10.1016/j.fsigen.2020.102251
Park JL, Kwon OH, Kim JH, et al., 2014. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet, 13:147-153. https://doi.org/10.1016/j.fsigen.2014.07.011https://doi.org/10.1016/j.fsigen.2014.07.011
Sijen T, Harbison S, 2021. On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime. Genes, 12(11):1728. https://doi.org/10.3390/genes12111728https://doi.org/10.3390/genes12111728
Tian H, Bai P, Tan Y, et al., 2020. A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Sci Int Genet, 49:102371. https://doi.org/10.1016/j.fsigen.2020.102371https://doi.org/10.1016/j.fsigen.2020.102371
Virkler K, Lednev IK, 2009. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int, 188(1-3):1-17. https://doi.org/10.1016/j.forsciint.2009.02.013https://doi.org/10.1016/j.forsciint.2009.02.013
Zhao C, Yang J, Xu H, et al., 2022. Genetic diversity analysis of forty-three insertion/deletion loci for forensic individual identification in Han Chinese from Beijing based on a novel panel. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(3):241-248. https://doi.org/10.1631/jzus.B2100507https://doi.org/10.1631/jzus.B2100507
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution